ONBOARD TERRAIN CLASSIFICATION VIA STACKEDINTELLIGENT METASURFACE-DIFFRACTIVE DEEP NEURAL NETWORKS FROM SAR LEVEL-0 RAW DATA

Mengbing Liu, Xin Li, Jiancheng An, and Chau Yuen

School of Electrical and Electronics Engineering (EEE), Nanyang Technological University, Singapore

Motivation & Challenges

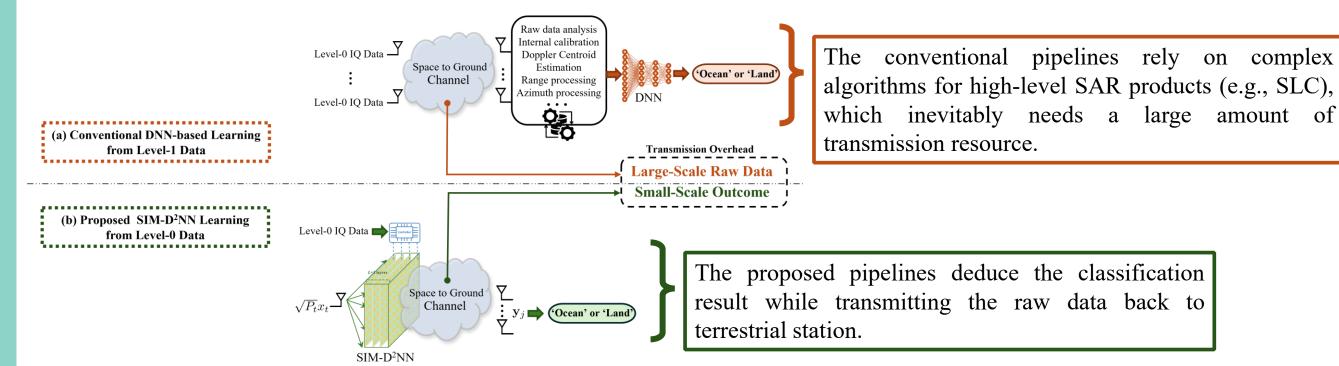


Figure 1: Comparison of processing progress.

♦ How do we design the SIM-D²NN to achieve real-time terrain classification?

Challenges:

- ◆ How to optimize the phase configurations at each metasurface layer?
- ◆ How to deduce the classification result from the received signal at the terrain station?
- ♦ How to tackle the noisy level-0 raw I/Q data¹?

¹The S1 level-0 raw data used for training is downloaded from the Copernicus browser (https://browser.dataspace.copernicus.eu).

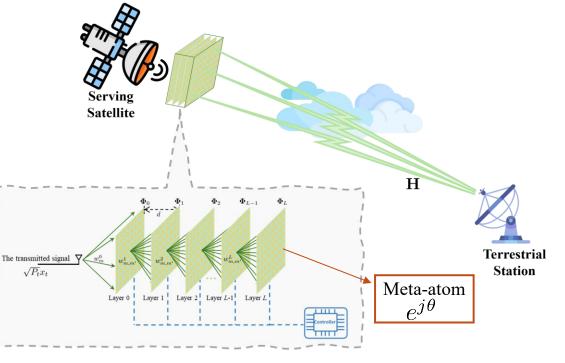
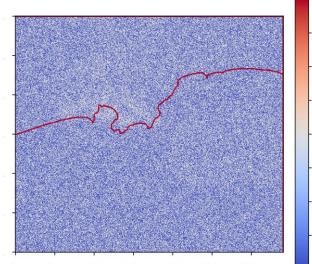
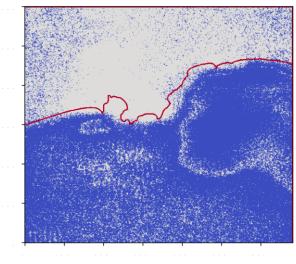


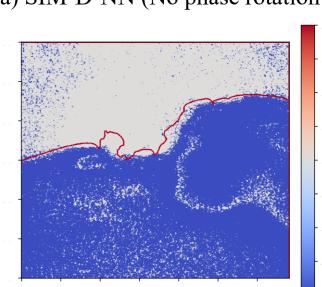
Figure 2: The overview of the satellite-to-ground transmission system.

What is SIM-D²NN?


- ◆ Multiple-layer stacked intelligent metasurface; (Mimic the structure of DNN)
- ◆ Signal transmitted from the satellite to the station via SIM; (Feedforward in DNN)
- lackloaise The phase configurations θ of meta-atoms at each layer; (The learnable weights in DNN)


Why SIM-D2NN?

- ◆ Offload the computation (heavily rely on digital backends) into the natural signal propagation in wave domain;
- ◆ Relieve the huge demand of transmission resources, such as the bandwidth and the energy consumption;
- ◆ Achieve **real-time**, **in-orbit decision-making** for the terrain classification task in remote sensing applications.


Results & Analysis


(a) SIM-D²NN (No phase rotation²)

(b) SIM-D²NN (Baseline)

(c) Digital DNN

(d) Gound Truth Label

Figure 3: Comparison of the visualization results under different methods.

- ◆ Form (a), the inclusion of **phase rotation proves essential** for effectively learning from the IQ raw data;
- ◆ From (b) and (c), the analog SIM-D²NN achieves **similar results** to the digital DNN.

Table 1: Comparison of different scenarios on the S1 level-0 raw IQ dataset.

Ablation Setting	S1 Level-0 Raw IQ Dataset			
	Precision (%) ↑	Recall (%) ↑	F1 Score (%) ↑	Overall Accuracy (%) ↑
$SIM-D^2NN (L=1)$	<u>87.63</u>	91.27	89.41	83.44
$SIM-D^2NN (L=6)$	87.21	92.87	89.95	88.15
SIM-D ² NN ($S=5\%$)	87.84	91.49	89.62	85.75
SIM-D ² NN ($S = 20\%$)	91.56	93.98	92.76	89.31
$SIM-D^2NN (P_t = 5 dBm)$	86.14	92.20	92.76 89.07	80.29
SIM-D ² NN (No phase rotation)	62.09	<u>78.54</u>	69.35	54.97
SIM-D ² NN (Baseline)	<u>90.54</u>	<u>90.67</u>	90.60	<u>87.83</u>
Digital DNN	94.78	97.14	95.95	92.91

- Increasing the number of Metasurface Layers from L=1 to L=4, leading to an increase in precision score (87.63% to 90.54%);
- ◆ Omitting the **phase rotation** augmentation leads to a significant drop in recall score (78.54% to 90.67%);
- ◆ Sampling more training samples may achieve higher performance, such as the F1 score (89.62% to 92.76%);
- lacktriangle Reducing **transmit power** P_t from 20 dBm to 5 dBm degrades accuracy from 87.83% to 80.29%.

² The phase rotation is adopted for data augmentation, which can be modulated on the chip naturally as the carrier waves pass through the input layer.

Conclusion

- ◆ Develop a multi-layer, SIM-D²NN designed to process S1 raw IQ data for terrain classification;
- ♦ By harnessing the **inherent properties** of wave propagation through multiple layers to achieve high performance as around 90%;
- ◆ Reducing the dependence on digital processing backends and lowering the costs associated with data transmission;
- ◆ Offering faster, more efficient, and sustainable solutions for remoting sensing applications.

Path Forward

- ◆ Nonlinear Function: Relying on specialized metasurface hardware, which is constrained to linear operations and limits the SIM-D2NN from performing critical nonlinear functions.
- ◆ Time-varying wireless environment: While we consider the noise and phase modulus constraints, real-word communication links might introduce more complex distortions, such as time-varying channels, imperfect channel information, and dynamic path loss.
- ◆ Comprehensive remote sensing tasks: Future work will try to expand on more remote sensing tasks and make the SIM-D2NN more generalized capability.

Project Website

mengbing001@e.ntu.edu.sg; xin019@e.ntu.edu.sg;

Contact Person