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Introduction
• Multimodal LLMs (MLLMs) offer impressive performance across 

many zero-shot computer vision tasks but struggle with tasks that 
require fine-grained detection and spatial reasoning.

• Prior work1 has demonstrated that the same trend holds true for 
earth observation (EO) tasks.

• Recent MLLMs2,3 now include explicit localization capabilities, 
making them better suited for these tasks..

• First study to benchmark these new models on EO object 
localization tasks and compare their performance to traditional 
detectors.

Models, Datasets, and Metrics
• MLLMs evaluated:

• Includes localization capabilities
• Molmo 7B O and Molmo 72B2

• Qwen 2.5-VL 7B and 72B3

• Does not include localization capabilities
• Llama 3.2 11B and 90B4

• Datasets:
• RarePlanes (RP): 1-class aircraft detection via satellite 

imagery
• Aerial Animal Detection (AAP): 3-class animal detection via 

imagery taken from a helicopter.
• xBD: 1-class building detection via satellite imagery.

• Metrics:
• Center Mean Average Precision (mAP): Modified mAP metric 

that uses a pre-determined pixel distance between center 
points, rather than bounding box overlap, to compute 
precision and recall.

Figure 1: Sample outputs using various MLLMs (green dots=ground truth and red 
Xs=predictions) across three tasks: building detection (left), animal detection 
(middle), and plane detection (right).

Zero-shot Results

Key Takeaways:
• MLLMs offer strong performance when objects are objects are 

sufficiently large, the shape is relatively distinct, and the class is 
not too specific. 

• Larger models do not always outperform smaller models.
• The Molmo family of models offers the strongest localization 

performance in the EO domain.
• MLLMs that are not explicitly tuned to output object coordinates, 

do not possess the innate ability to do so, despite strong 
performance across other tasks.

Table 1: Object detection results for various MLLMs across three different datasets.

Comparison to Standard Detectors

Key Takeaways:
• If an MLLM struggles with a task, a standard detector is likely to 

as well.
• MLLMs offer utility in few-shot and limited data scenarios but are 

quickly surpassed by standard object detectors as more data 
becomes available (< 64 examples for the datasets we explored).

Figure 2: Few-shot Faster RCNN performance with varying amounts of training 
images (blue lines) vs. top-performing MLLM's performance (alt-color lines) for each 
task.

Failure Scenarios and Limitations
• Models tend to produce more false negatives than false 

positives.
• Objects more likely to be missed when: very small, partially 

obscured, or close to other objects.
• Potential reasons for false negatives: Lack of extreme precision 

in point placement, no object confidence scores (unlike traditional 
detectors), issues scaling to scenes with many objects.

• False positives typically occur with reasonable distractors, but we 
occasionally see catastrophic failures.

Figure 4: xBD example with Molmo 72B 
labels. Example of a catastrophic failure, 
where models will sometimes generate a 
sequence of many detections in a line. 
We are uncertain what results in this 
behavior, but we notice it more with small 
models.

Figure 3: RarePlanes example with 
Molmo 72B labels. The model 
successfully predicts most planes but 
misses a plane that is in close 
quarters to others and misses two 
that are partially obscured.
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