Imagery

An Analysis of Multimodal LLMs for
Object Localization in Earth Observation

Darryl Hannan, John Cooper, Dylan White, Henry Kvinge, Timothy Doster, and Yijing

Watkins

Introduction

e Multimodal LLMs (MLLMs) offer impressive performance across
many zero-shot computer vision tasks but struggle with tasks that
require fine-grained detection and spatial reasoning.

* Prior work! has demonstrated that the same trend holds true for
earth observation (EO) tasks.

 Recent MLLMs?? now include explicit localization capabilities,
making them better suited for these tasks..

* First study to benchmark these new models on EO object
localization tasks and compare their performance to traditional
detectors.

Zero-shot Results

Model RarePlanes mAP@30pix AAP mAP@30pix xBD mAP@ 15pix
Molmo 7B O 62.62 30.26 2.97
Molmo 72B 72.12 29.82 4.22
Qwen 2.5-VL7B  46.62 30.01 0.49
Qwen 2.5-VL 72B  50.03 12.09 0.50
Llama 3.2 11B 0.00 0.00 0.00
Llama 3.2 90B 0.00 0.00 0.00

Table 1: Object detection results for various MLLMs across three different datasets.

Key Takeaways:

 MLLMs offer strong performance when objects are objects are
sufficiently large, the shape is relatively distinct, and the class is
not too specific.

» Larger models do not always outperform smaller models.

* The Molmo family of models offers the strongest localization
performance in the EO domain.

 MLLMs that are not explicitly tuned to output object coordinates,
do not possess the innate ability to do so, despite strong
performance across other tasks.

Failure Scenarios and Limitations

* Models tend to produce more false negatives than false
positives.

« Objects more likely to be missed when: very small, partially
obscured, or close to other objects.

« Potential reasons for false negatives: Lack of extreme precision
in point placement, no object confidence scores (unlike traditional
detectors), issues scaling to scenes with many objects.

 False positives typically occur with reasonable distractors, but we
occasionally see catastrophic failures.

Figure 4: xBD example with Molmo 72B
labels. Example of a catastrophic failure,
where models will sometimes generate a
sequence of many detections in a line.
We are uncertain what results in this
behavior, but we notice it more with small
models.

Figure 3. RarePlanes example with
Molmo 72B labels. The model
successfully predicts most planes but
misses a plane that is in close
quarters to others and misses two
that are partially obscured.

Models, Datasets, and Metrics

 MLLMs evaluated:
* Includes localization capabilities
« Molmo 7B O and Molmo 72B%
« Qwen 2.5-VL 7B and 72B*
» Does not include localization capabilities
* Llama 3.2 11B and 90B*
« Datasets:

« RarePlanes (RP): 1-class aircraft detection via satellite
Imagery

 Aerial Animal Detection (AAP): 3-class animal detection via
imagery taken from a helicopter.

« XBD: 1-class building detection via satellite imagery.

* Metrics:

« Center Mean Average Precision (mAP): Modified mAP metric
that uses a pre-determined pixel distance between center
points, rather than bounding box overlap, to compute
precision and recall.
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Figure 1: Sample outputs using various MLLMs (green dots=ground truth and red
Xs=predictions) across three tasks: building detection (left), animal detection
(middle), and plane detection (right).
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Figure 2: Few-shot Faster RCNN performance with varying amounts of training
images (blue lines) vs. top-performing MLLM's performance (alt-color lines) for each
task.

Key Takeaways:

- If an MLLM struggles with a task, a standard detector is likely to
as well.

 MLLMs offer utility in few-shot and limited data scenarios but are
quickly surpassed by standard object detectors as more data
becomes available (< 64 examples for the datasets we explored).
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