
Optimizing Representativeness and Quantity
Cost structures of physical data collection induce a trade-off between collecting datasets that
1. representative, containing enough data from relevant parts of the region of interest, and
2. have a high-quantity of data, a significant factor in ML model performance across all domains. 
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Objective: Evaluate the effectiveness of our 
proposed sampling method in constrained 
settings.

Steps:
1. Obtain sample subset according to 

sampling method with respect to budget
2. Train model on selected sample
3. Compare performance across sampling 

method

Dataset: USAVars [1]

Model: 
1. Feature extraction to create 4096-

dimensional features.
2. Ridge regression fit on standardized 

features.

Groupings: Points are clustered by land cover 
distribution in each 1 km2 region using the 2016 
National Land Cover Database (NLCD) 30m 
classifications.

Cost Structures:
• Cost Structure 1 (Moderate cost difference):

Groups 0, 2, 5, 6 cost 1; Groups 1, 3, 4, 7 
cost 10.

• Cost Structure 2 (Extreme cost difference):
Groups 1 and 3 cost 50; other groups cost 1.

Methods

Table 1: Average number of samples obtained by each sampling method under budget 
constraints. Cost Structure 1 (moderate cost difference) and Cost Structure 2 (extreme cost difference). 

NLCD groups
Figure 1: R2 vs. cost of collection for Cost Structure 1.

Figure 2: R2 vs. cost of collection for Cost Structure 2.

Takeaway 1. Larger training sets do not necessarily lead to increased model performance, as for cost structure 1, our method with 𝜆=1 outperforms 𝜆=0.05 
and 𝜆=0. This demonstrates the importance of having a representative training set.

Takeaway 2. For cost structure 2, our method with all values of 𝜆 leads to significant improvements above simple random and stratified random sampling in 
the population and treecover outcomes. This demonstrates the importance of having a large dataset when operating under cost constraints. 

Takeaway 3. Our method is particularly effective when some groups are significantly more expensive or difficult to sample.
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Motivation
Problem:

Existing labeled data GeoML Model Unlabeled data

Data collection 
in the field

Training

Challenge 1: 
Potential lack of 
existing data!

Sample selection

Challenge 2: 
Does not account 
for variable cost 
across space!

Training

Traditional active 
learning & subset 
selection paradigms 
present challenges 
for GeoML.

Long-term goal: Develop a spatial sampling scheme to optimize geospatial data collection for GeoML models

 à Step 1 (Workshop paper focus): Understand how factors of dataset composition effect GeoML model performance.

tunable hyperparameter


