Using Multiple Input Modalities can Improve Data-Efficiency for ML with Satellite Imagery

OSM

raoarjun@colorado.edu

Arjun Rao & Esther Rolf

University of Colorado Boulder

Problem 1

Problem 2

We study the label-efficiency and OOD generalization capability associated with adding non-optical, contextual inputs to commonly used GeoML architectures

Methodology

Research Goal

Key Result 1: Multi-Modal Inputs Aid Label-Efficiency ID!

Key Result 2: Multi-Modal Inputs Aid OOD Generalization!

Between 100-700 training samples:

9.3% Improvement in test OA with EnviroAtlas using [PROC-STACK]

8.1% Improvement in test Dice with SustainBench Field Delineation using [STACK]

When Evaluated OOD: **4.1%** Improvement with the Prior [2] on EnviroAtlas across OOD cities

3.1% Improvement on test F1 with an auxiliary SatCLIP token on BigEarthNetv2.0 using [TOKEN-FUSE]

Arbitrarily learned inputs can hurt GeoML OOD and Label-Efficiency!

ub%	F SatCLIP	Register Token	FT SatCLIP
1%	46.3/36.1	45.1/33.2	45.4/34.7
2%	55.6/45.9	50.3/40.5	53.2/42.8
5%	62.7/54.1	61.6/53.9	63.5/56.2
20%	66.8/60.6	65.3/59.8	65.3/59.1
50%	70.1/64.7	68.1/60.9	67.1/60.1
00%	70.3/65.2	66.5/59.6	66.0/59.1
	1b% % % % 0% 0% 0%	b% F SatCLIP % 46.3/36.1 % 55.6/45.9 % 62.7/54.1 0% 66.8/60.6 0% 70.1/64.7 0% 70.3/65.2	b% F SatCLIP Register Token % 46.3/36.1 45.1/33.2 % 55.6/45.9 50.3/40.5 % 62.7/54.1 61.6/53.9 0% 66.8/60.6 65.3/59.8 0% 70.1/64.7 68.1/60.9 0% 70.3/65.2 66.5/59.6

Table: Avg Prec/F1 with Frozen (F) vs Register [3] vs Fine-Tuned (FT) SatCLIP auxiliary token on BigEarthNetv2.0

Finding: Learned embeddings when [TOKEN-FUSE] when fine-tuned become highly localized to countries covered in train split; global context of multi-modal input is lost!

References

[1] Konstantin Klemmer, Esther Rolf, Caleb Robinson, Lester Mackey, and Marc Rußwurm. SatCLIP: Global, general-purpose location embeddings with satellite imagery. AAAI 2025.

[2] Esther Rolf, Nikolay Malkin, Alexandros Graikos, Ana Jojic, Caleb Robinson, and Nebojsa Jojic. Resolving label uncertainty with implicit posterior models. UAI 2022 [3] Timoth'ee Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision Transformers Need Registers. ICLR 2024