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Motivation & Contributions
• Task: Detect tiny objects (e.g., vehicles)

in SAR satellite images.

• Challenges: Small size, severe class im-
balance, noise, annotation scarcity.

• Solution: TRANSAR vision trans-
former:

– Self-supervised pretraining (Masked
Image Modeling, MIM)

– Curriculum- and feedback-aware
adaptive sampling scheduler

– Auxiliary segmentation to enhance
small object recovery
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• SSL Pretraining: Learns structure from unlabelled SAR using block-wise masking.

• Finetuning: Detection head with adaptive sampling and auxiliary segmentation.

• Output: Probability heatmaps → peak detection → object locations.

Adaptive Sampling Scheduler

• Class imbalance tackled via curriculum-
based scheduler.

• Gradually shifts sampling from real distri-
bution → balanced.

• Real-time adjustment using model feed-
back (e.g., F1 score).
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Key findings: Adaptive sampling and mask size crucial; optimal hyperparameters from ablation studies.

Benchmarking & Sensitivity

Detection Scores
mAP AP50 AP75 F1 Prec. Recall

TRANSAR-large 66.8 68.9 85.4 79.2 77.9 80.5
ViT-MIM (SAR) 52.9 55.0 58.8 58.5 55.3 62.2
SegFormer (RGB) 35.8 36.4 40.9 40.6 38.6 42.8
UNet-SENet (SAR) 44.5 45.2 47.4 50.6 46.1 56.1

Ablation Table
Setting F1 (%)
No Adaptive Sampling 61.6
Linear Scheduler 69.7
Cosine Scheduler 79.2
Block-mask size 8 79.2
Block-mask size 16 75.4
Block-mask size 32 70.6

TRANSAR outperforms prior baselines; ablations reveal crucial sampling and mask-size choices.

Qualitative Results

Fine-grained detections, robustness to false positives, higher precision (urban), parity in clear rural scenarios.

Takeaways & Outlook
• Self-supervised ViTs enable strong

SAR detection even with few/zero labels.

• Adaptive sampling scheduler ad-
dresses data imbalance and maximizes F1.

• Outperforms prior SSL and supervised
models on all key metrics.

• Disaster relief, remote monitoring,
urban analytics—real-world impact.

• More annotated datasets and benchmarks
needed for large-scale generalisation.


