

Metadata, Wavelet, and Time Aware Diffusion Models for Satellite Image Super Resolution

Luigi Sigillo, Renato Giamba, Danilo Comminiello Sapienza University of Rome

Real-world Impact. Environmental monitoring, disaster response, and agricultural management require detailed imagery unavailable at scale.

Access Limitation. High costs and sensor constraints limit frequent HR imaging. Widely available alternatives like Sentinel-2 (10–60m resolution) lack the detail needed for tasks like crop mapping or urban infrastructure analysis.

Modeling Challenges. Satellite SR is challenged by heterogeneous spatial and temporal resolutions, metadata-rich inputs, and strong environmental variability necessitating context-aware generative approaches.

What is MWT-Diff? Our framework is a novel approach combining latent diffusion models with wavelet and metadata integration to generate super-resolved satellite imagery.

MWT-Diff at a Glance

Why it works? Our model preserves critical spatial characteristics while demonstrating significant improvements. Leverages the fusion of metadata, wavelet features, and temporal information of the MWT-Encoder at multiple scales.

1) Input. A low-resolution satellite image is first encoded by a pretrained VAE encoder into a latent representation z.

MWT-Diff

2) Wavelet
Decomposition &
Embedding. Pretrained
WaveViT applies
Discrete Wavelet
Transform (DWT) to
extract multi-frequency
features
(textures/edges).

3) Conditioning Fusion. MWT-Encoder combines:

- Wavelet embeddings
- Metadata (sinusoidal encoding)
- Timestep data
- \rightarrow Outputs a 3072 guidance vector.

5) High-Res (HR) Output. 512×512 photorealistic image, preserving geospatial details (e.g., crop boundaries, urban layouts).

Experimental Results

MWT-Diff advantages

Metadata-guided diffusion → Improves reconstruction fidelity by

incorporating physical sensor parameters and location data from satellite observations.

Comparison of the LR Sentinel-2 input, the output of the model, and the corresponding HR fMoW.

	Model	$FID\downarrow$	LPIPS \downarrow
Mo M	Low Resolution StableSR	114.38 53.85	0.756 +/- 0.004 0.345 +/- 0.002
f	MWT-Diff	53.07 (-1.44%)	0.336 +/- 0.002 (-2.61%)
Sentinel2-fMoW	WorldStrat Cornebise et al. (2022)	426.7	0.736 ± 0.092
	MSRResNet Wang et al. (2018b)	286.5	0.783 ± 0.081
	DBPN Haris et al. (2018)	278.2	0.750 ± 0.052
	Pix2Pix Isola et al. (2017)	196.3	0.643 ± 0.045
	SatDiffMoE Luo et al. (2024)	115.6	0.606 ± 0.044
	DiffusionSat Khanna et al. (2024)	102.9	0.638 ± 0.034
	ControlNet Zhang et al. (2023)	102.3	0.644 ± 0.034
	MWT-Diff	98.1 (-4.11%)	0.555 ± 0.003 (-8.41%)

Wavelet transforms (WaveViT) → Preserves textures, boundaries and high-frequency features.

Computationally efficient \rightarrow Only trains the MWT-Encoder while keeping diffusion backbone frozen.

Benchmark-Leading Quality \rightarrow Achieves FID \downarrow 4.11% and LPIPS \downarrow 8.41% on Sentinel2-fMoW vs. prior diffusion baselines.

Qualitative results on $128 \times 128 \rightarrow 512 \times 512$ with fMoW.