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ABSTRACT

Over the past few decades, geospatial objects have been extensively recognized
as significant components in remote sensing applications, including environmen-
tal monitoring, urban planning, and defense. Particularly, accurate segmentation
of objects has aimed at meaningful observations from aerial imagery, leading to
the necessity of deep learning-based methodologies. However, conventional deep
learning-based segmentation methodologies exhibit limited generalization capa-
bilities across diverse geographical domains due to inherent variations in regional
characteristics and data distribution shifts. Furthermore, most existing approaches
strongly rely on static, pre-trained models lacking the adaptability to handle pre-
viously unseen data. To alleviate these limitations, we propose a novel Few-shot
Semi-Online Adaptation framework incorporating interactive user feedback to it-
eratively refine segmentation outputs. By leveraging online learning and test-time
adaptation, our approach enables models to continuously be accurate based on
minimal user corrections, ensuring flexibility and adaptability to new environ-
ments. Experimental results demonstrate that our method effectively enhances the
segmentation accuracy with minimal user intervention, bridging the gap between
automated segmentation and domain-specific expertise. Our research contributes
to the development of interactive, user-adaptive segmentation models to facilitate
geospatial analysis more efficiently and reliably.

1 INTRODUCTION

Geospatial objects, particularly buildings, are structurally significant features in various remote sens-
ing applications, including urban planning, disaster response, and environmental monitoring (Kaiser
et al., 2017; Yi et al., 2019; Guo et al., 2019; Wang et al., 2021). Over the past decades, deep
learning (DL)-based approaches have significantly improved segmentation accuracy by leveraging
large-scale annotated aerial imagery. The strong improvements have facilitated automation in build-
ing segmentation, enabling large-scale geospatial analysis (Zhao et al., 2018; Liu et al., 2020; She,
2022; Lee et al., 2024). Despite these advancements, however, building segmentation remains chal-
lenging due to various factors inherent to aerial imagery (Liu et al., 2024; Memar et al., 2024; Wu
et al., 2024). One of the primary challenges in DL-based building segmentation is the ambiguity in
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defining building boundaries, due to low spatial resolution, occlusions, and variations in architec-
tural structures (Kim et al., 2018; Ye et al., 2021; Zhang et al., 2024b;a). Compared to natural ob-
jects with well-defined edges, buildings exhibit indistinct boundaries, resulting segmentation outputs
highly subjective and dependent on the specific application. Furthermore, since the individuals rec-
ognize the differences in perception of defining building area, segmentation methodologies adapting
to diverse environments and requirements have been necessitated (Benjdira et al., 2019; Wittich &
Rottensteiner, 2021; Lee et al., 2021). Another significant limitation in existing DL-based segmen-
tation methods is the vulnerability to domain shifts, due to variations in data acquisition conditions,
sensor types, and geographical regions (Wang et al., 2021; Lee et al., 2021). Traditional DL models,
typically trained offline (i.e., pre-trained) on specific datasets, experience significant performance
degradation when applied to unseen domains (Lee et al., 2021; Min et al., 2023; Chen et al., 2023).

Recently, to address these challenges, TTA has been developed as robust technique, allowing pre-
trained models to adapt dynamically using unlabeled test data before predictions or inference. TTA
techniques, such as entropy minimization and self-training, have been widely studied in image clas-
sification (Liang et al., 2024; Wang et al., 2020), and recent works have demonstrated their ef-
fectiveness in segmentation tasks as well (Prabhudesai et al., 2023; Ma, 2024; Chen et al., 2024).
However, most existing TTA approaches have still struggled with domain shifts in segmentation
due to the reliance on pre-defined adaptation strategies, leading to limited generalization to diverse
test scenarios. Most recently, beyond TTA, Online Learning has been explored as a methodologies
of enabling DL models to incrementally update based on sequential input data. Unlike traditional
batch learning, which requires full dataset re-training, online learning efficiently integrates new in-
formation into models, reducing computational costs and improving adaptability to real-time data
streams (Hoi et al., 2021). Moreover, online learning has been successfully applied to segmentation
tasks, demonstrating its potential for real-time adaptation and improved performance in dynamic
environments (Zhao et al., 2017; Volpi et al., 2022). However, conventional online learning tech-
niques fail to account for the subjective nature of building delineation as perceived by individual
users, resulting in limited adaptability and suboptimal refinement of segmentation outputs in practi-
cal applications.

To address these challenges, we propose an interactive segmentation framework that integrates TTA
and Semi-Online Learning, enabling user-driven refinement of segmentation predictions. Unlike
conventional DL models that remain static after deployment, our approach incorporates an online
learning mechanism where user corrections are encoded as feature embeddings and integrated into
the processing pipeline of transformer. The iterative refinement process ensures that segmentation
outputs align closely with human-defined criteria. Particularly, our framework exhibits the contri-
bution of a hybrid architecture leveraging a transformer-based feature extractor with a variational
autoencoder (VAE)-driven fusion module, facilitating adaptive segmentation refinement.Rather than
focusing on mitigating occlusions or low-resolution imagery, our approach dynamically adjusts seg-
mentation predictions in response to user feedback, continuously improving based on interactive
corrections. By prioritizing human-guided refinement over rigid feature extraction strategies, our
framework establishes a more adaptive and user-aligned segmentation paradigm.

2 METHODS

2.1 OVERALL ARCHITECTURE

The proposed framework integrates Test-Time Adaptation (TTA) and Semi-Online Learning, en-
abling iterative refinement of building segmentation predictions via user interactions. Unlike con-
ventional models that remain static post-deployment, our approach dynamically updates segmen-
tation outputs by incorporating user corrections as feature embeddings within a transformer-based
processing pipeline. Given an input aerial image I ∈ RH×W×C , the baseline segmentation network
generates an initial prediction Sb = fθb(I), where fθb represents the baseline segmentation model
parameterized by θb. The segmentation logits are then converted into a softmax probability map as
Pb = softmax(Sb). To incorporate user-driven refinements, a transformer encoder extracts spatial
features from both the input image and the initial segmentation output, producing a refined tok-
enized representation T = fθt(I,Pb), where fθt represents the transformer-based feature extraction
process. The final segmentation output is obtained by integrating T with VAE-generated latent fea-
tures Z, resulting in Sf = gθv (T,Z), where gθv denotes the VAE-based fusion module. Instead of
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automatically adjusting to domain shifts or low-resolution imagery, this fusion mechanism ensures
that segmentation updates are directly influenced by human corrections, allowing the model to refine
predictions in an interactive and user-guided manner.

2.2 TRAINING AND INFERENCE PIPELINE

The proposed framework follows a two-stage pipeline comprising offline pre-training and TTA-
based adaptive learning, followed by real-time inference with user-driven refinements. In the offline
pre-training phase, the baseline segmentation network is trained using a supervised learning ap-
proach on a large-scale aerial imagery dataset. To enhance local feature representations, we employ
a patch-based supervision loss L1, defined as:

L1 =
∑
p

(LCE(P
p
b ,Y

p) + λdiceLDice(P
p
b ,Y

p)) , (1)

where p indexes a patch in the image, LCE represents the cross-entropy loss, and LDice denotes the
Dice loss. The weight term λdice balances the contribution of Dice loss, ensuring improved seg-
mentation precision at object boundaries. In the TTA-based adaptive learning phase, domain shift
augmentation is applied by perturbing input images with contrast transformations, spatial distor-
tions, and noise injections. The model adapts to these variations via contrastive learning techniques
that reinforce feature alignment across different imaging conditions. Additionally, a modified triplet-
inspired loss function L2 is introduced to integrate user modifications effectively.

During inference, the framework employs real-time segmentation refinement via user interactions
and adaptive learning mechanisms. Given an input aerial image, the baseline segmentation net-
work produces an initial softmax probability map, which is subsequently tokenized and processed
via the transformer-based encoder. The transformer enhances feature representations by capturing
contextual cues from surrounding regions, leading to more precise object delineation. User cor-
rections are incorporated via an interactive online learning mechanism. When a user refines the
predicted segmentation mask, their modifications are encoded as additional feature embeddings and
integrated into the transformer’s processing pipeline. These user-driven embeddings dynamically
influence subsequent segmentation predictions, ensuring that the model continuously aligns with
human-defined segmentation criteria. To reinforce this adaptation, the triplet-inspired loss function
L2 is defined as:

Figure 1: Proposed interactive segmentation framework, where a baseline network generates initial
outputs refined by a transformer encoder with user corrections. A VAE-driven fusion module further
enhances segmentation, optimized via losses L1 and L2.
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L2 =
∑
p

(d(fθv (T
p),Yp)− d(fθv (T

p),Yp
u) + α)+ , (2)

where d(·, ·) denotes a distance metric such as cosine similarity or Euclidean distance, and α is a
margin hyperparameter. This loss function enforces that the refined segmentation fθv (T

p) is closer
to the user-modified mask Yp

u than to the original mask Yp, thereby incorporating user prefer-
ences into segmentation refinement. The final segmentation prediction is generated by passing the
refined feature tokens via the VAE-driven fusion module, where a learned probabilistic sampling
strategy produces robust segmentation masks. This process allows the model to adapt to occlusions,
low-resolution imagery, and complex urban structures. A hierarchical attention mechanism further
enhances segmentation performance by capturing multi-scale dependencies, enabling fine-grained
segmentation in densely cluttered environments. To ensure long-term adaptability, the system incor-
porates a feedback loop that updates model parameters based on accumulated user corrections and
environmental variations. By leveraging semi-online learning and test-time adaptation, our frame-
work establishes a scalable and flexible solution for aerial building segmentation.

3 EXPERIMENTS

Figure 2: Representative results of our experiments compared to other models.

To evaluate the effectiveness of our interactive segmentation framework, we compare its per-
formance against various baseline models. Table 1 presents the Intersection over Union (IoU)
scores with 95% confidence intervals for different models, demonstrating a consistent improve-
ment when incorporating our method. Notably, our approach achieves a significant performance
boost across all architectures, with improvements ranging from approximately 5.4% (GLCANet)
to 5.9% (ClassTrans) in IoU. Table 2 further analyzes the IoU, Precision, and Recall metrics un-
der different model configurations. Here, Ours-N indicates the number of modified buildings with
uer-interactions. As the number of user interactions increases, our framework progressively refines
segmentation accuracy, with Ours-100 achieving the highest IoU of 88.87. Compared to TTA mod-
els, our method maintains higher recall and precision, highlighting the impact of user-guided refine-
ments in improving segmentation quality. These results validate that incorporating user interactions
effectively enhances segmentation accuracy beyond static deep learning models.

4 CONCLUSION

In this work, we introduced an interactive segmentation framework that incorporates TTA and
Semi-Online Learning to iteratively refine building segmentation based on user interactions. Unlike
conventional models that remain static after deployment, our approach dynamically updates segmen-
tation outputs by integrating user corrections as additional feature embeddings within a transformer-
based processing pipeline. The hybrid training pipeline employs a patch-based supervision loss to
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Model Baseline Ours
U-Net 71.30 (71.00, 71.60) 77.28 (76.81, 77.75)

AttentionU-Net 68.75 (68.44, 69.06) 74.59 (74.10, 75.08)
SegFormer 72.91 (72.63, 73.19) 78.40 (77.99, 78.80)

SegNeXt 71.51 (71.22, 71.80) 77.91 (77.59, 78.23)
ClassTrans 79.38 (79.10, 79.66) 84.77 (84.39, 85.15)
CSTU-Net 79.25 (79.00, 79.50) 84.66 (84.27, 85.06)
GLCANet 71.58 (71.29, 71.87) 76.91 (76.48, 77.34)

Table 1: Comparison of IoU performance be-
tween baseline and our method with 95% C.I.

Model IoU Precision Recall
Ours-1 76.92 84.10 90.01

Ours-10 83.34 87.48 94.63
Ours-100 88.87 92.57 95.69

TTA-1 82.42 86.20 94.94
TTA-2 80.67 87.66 91.01
TTA-3 80.06 84.41 93.94

Table 2: IoU, Precision, and Recall comparison
for different model settings.

enhance feature extraction and a modified triplet loss to effectively incorporate user modifications,
ensuring that segmentation predictions align with human-defined criteria. Rather than autonomously
adapting to domain shifts or low-resolution imagery, our method prioritizes user-driven refinements
to iteratively improve segmentation accuracy. Experimental results validate the effectiveness of our
approach in refining segmentation outputs via interactive corrections. Future work will explore fur-
ther optimizing the feedback mechanism and extending the framework to support multi-modal user
interactions for broader remote sensing applications.
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A RELATED WORKS

A.1 TEST-TIME ADAPTATION

Machine learning aims to train robust models capable of generalizing effectively to test samples,
even in the presence of distribution shifts. However, these models often experience performance
degradation due to uncertainties in test distributions. TTA enables pre-trained models to adapt using
unlabeled test data before making predictions, thereby mitigating such degradation (Liang et al.,
2024). Previous research on TTA has primarily focused on image classification tasks, employing
techniques such as entropy minimization, self-training, and batch normalization statistics adaptation
to enhance test-time performance Wang et al. (2020). Test-Time Adaptation has also demonstrated
its effectiveness in segmentation tasks. (Prabhudesai et al., 2023) introduced slot-TTA, which lever-
ages slow inference to significantly improve segmentation performance in out-of-distribution (OOD)
scenarios. Ma (2024) proposed the Improved Self-Training (IST) method, achieving performance
enhancements not only in classification but also in detection and segmentation tasks. Furthermore,
(Chen et al., 2024) presented a novel approach that utilizes prompts tailored to individual test images,
demonstrating performance improvements in continual test-time adaptation settings for segmenta-
tion. These studies indicate that TTA can substantially enhance segmentation models, particularly
in adapting to domain shifts and novel environments.

A.2 ONLINE LEARNING

Traditional machine learning paradigms predominantly operate in a batch learning or offline learn-
ing manner, particularly in supervised learning. These approaches involve training models using an
entire dataset at once, followed by deployment for inference without further updates. However, this
paradigm entails high retraining costs when processing new data, limiting scalability in real-world
applications. As batch learning becomes increasingly restrictive, adapting machine learning models
to continuously evolving data streams has emerged as a critical challenge in the field of artificial
intelligence. Unlike traditional machine learning, online learning is a subfield that enables models
to incrementally learn from sequentially arriving data. This approach overcomes the limitations of
batch learning by allowing efficient and immediate model updates upon receiving new training sam-
ples Hoi et al. (2021). Online learning has been extensively studied in various machine learning
domains, including segmentation tasks. (Zhao et al., 2017) proposed an online learning-based hand
segmentation method, while (Volpi et al., 2022) introduced a new protocol for continuously learning
semantic segmentation from image sequences on a frame-by-frame basis. These studies demon-
strate the integration of online learning with segmentation, highlighting its potential for real-time
adaptation, efficient learning, and improved performance in dynamic environments.

A.3 QUERY-FUSION

Query-fusion has been widely explored in segmentation tasks, particularly in transformer-based
architectures, where it plays a crucial role in feature aggregation and attention-based refinement.
Existing approaches commonly utilize query embeddings to capture contextual dependencies across
spatial and semantic features, enhancing segmentation accuracy. Particularly, the attention-based
query mechanisms in transformer models facilitated that query tokens interact with key-value pairs
to refine feature representations dynamically.

Recent works have demonstrated the effectiveness of query-based feature fusion in deep learning
models for segmentation (Lu et al., 2025). Transformers leverage self-attention to propagate infor-
mation across different spatial regions, allowing for better contextual understanding. In particular,
query-based fusion mechanisms enable models to aggregate multi-scale features and refine object
boundaries by dynamically selecting relevant spatial information. These methods have been widely
applied in semantic and instance segmentation tasks, where refining segmentation masks based on
attention-weighted query embeddings has shown significant improvements in performance.
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B MOTIVATION

Accurate building segmentation in aerial imagery is a fundamental task in remote sensing and urban
analysis. While deep learning models have significantly improved segmentation performance, exist-
ing methods often struggle to generalize across diverse geographic regions and imaging conditions.
A major challenge should be in the inherent variability in human perception when defining build-
ing boundaries, leading to inconsistencies in automated segmentation. This paper addresses these
challenges by introducing an interactive segmentation framework that refines predictions based on
user-defined criteria via a query-fusion mechanism. Traditional deep learning-based segmentation
models typically rely on static feature extraction pipelines trained on large-scale datasets. However,
the conventional models face significant limitations when applied to real-world scenarios, where
domain shifts, occlusions, and variations in imaging conditions degrade segmentation performance.
Previous methods have attempted to mitigate the significant issues via domain adaptation and test-
time augmentation, but such approaches often fail to fully align with user-defined segmentation
requirements. Furthermore, conventional models lack the ability to incorporate human corrections
post-deployment, making them less effective in practical applications where subjective interpreta-
tion plays a role in defining building structures.

B.1 VARIATIONS OF COGNITIVE RECOGNITION IN DEFINING BUILDINGS

Defining building boundaries is inherently subjective, as different users may perceive and anno-
tate structures differently based on contextual or cognitive biases. Factors such as occlusions, roof
patterns, and shadow effects introduce further ambiguity in aerial imagery segmentation. Existing
segmentation models rely on fixed ground-truth annotations, which may not always reflect the most
contextually accurate representations of buildings. This variability in human cognition necessitates
a more flexible segmentation approach that can adapt to individual user preferences, enabling more
precise and interpretable segmentation outputs.

B.2 QUERY-FUSION

To address these challenges, our method extends traditional segmentation approaches by integrat-
ing user interactions into the query-fusion process. Unlike conventional query-based segmentation,
which primarily relies on learned priors and spatial relationships, our framework dynamically en-
codes user corrections as query embeddings within a transformer-based processing pipeline. This
interactive refinement process allows real-time modifications to influence segmentation predictions,
ensuring that updates align with human-defined segmentation criteria rather than relying solely on
pre-trained feature extraction. By incorporating user-driven query-fusion, our approach bridges the
gap between static deep learning models and interactive segmentation frameworks. Unlike existing
query-based attention mechanisms, which are typically optimized for autonomous feature selection,
our method directly integrates human feedback, making it more adaptable to dynamically evolv-
ing segmentation tasks. This ensures that the segmentation model remains flexible and responsive
to user-defined modifications, ultimately improving segmentation accuracy and interpretability in
practical applications.

C METHODS

C.1 TRAINING PIPELINE

Our proposed framework follows a structured training pipeline that aligns with the architecture de-
picted in Fig. 2. The training process ensures consistency across all components while introducing
a mechanism to simulate user interactions without explicit manual annotations. To achieve this, we
employ a data augmentation strategy where the ground truth segmentation masks are randomly per-
turbed using morphological transformations. These modifications mimic potential user corrections,
enabling the model to learn from dynamically adjusted segmentation masks. Instead of direct user
interactions, these perturbed masks serve as interactive refinements during training.

Initially, an input aerial image is processed via a frozen pre-trained baseline segmentation network,
generating an initial softmax probability output. This output, along with the perturbed ground truth
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mask, is then tokenized and passed via a transformer-based encoder, which extracts spatial and con-
textual features. The transformer embeddings are concatenated and fed into a variational autoen-
coder (VAE)-driven fusion module, refining the final segmentation prediction. The optimization
process leverages three key loss functions: (1) a patch-based supervision loss L1, which ensures
local feature consistency; (2) a triplet-inspired loss L2, designed to align the refined segmentation
output with the modified ground truth while preserving structural accuracy; (3) supervision between
final output segmentaiton mask and augmented ground truth. This pipeline enables the model to
adapt to variations in ground truth annotations while maintaining consistency across training itera-
tions.

C.2 INFERENCE PIPELINE

During inference, the framework efficiently refines segmentation predictions without requiring re-
training of the baseline segmentation model. Instead of relying on additional model parameters, the
refinement process is guided by user-provided corrections, which are incorporated as query embed-
dings in the transformer processing pipeline. The pre-trained baseline model remains frozen, ensur-
ing computational efficiency by eliminating redundant re-training. Given an input image, the initial
segmentation mask is generated and tokenized, followed by feature extraction via the transformer
encoder. User interactions, represented as manual segmentation corrections, are integrated into the
query-fusion process. These corrections dynamically adjust the transformer embeddings, allowing
the model to refine predictions iteratively. Finally, the refined segmentation output is generated via
the VAE-based fusion module, ensuring that the final segmentation aligns with user-defined criteria.
By leveraging a lightweight adaptation mechanism without modifying the baseline model’s parame-
ters, our method maintains efficiency while providing flexible, user-driven segmentation refinement.

D EXPERIMENTS

D.1 DATASETS

To evaluate the segmentation performance of the proposed method, we utilized two publicly avail-
able datasets: the Inria Aerial Image Labeling Dataset (Maggiori et al., 2017) and the LoveDA
Dataset (Wang et al., 2021). The Inria dataset consists of high-resolution aerial images captured over
urban and suburban areas, providing detailed building annotations for segmentation tasks. LoveDA
offers a diverse set of satellite imagery covering urban and rural landscapes, making it suitable for
assessing model generalization across varying environmental conditions. Each dataset was split into
five subsets following a k = 5 cross-validation scheme. Three subsets were used for training, one
for validation, and one for testing. User interactions were simulated by introducing manual correc-
tions to segmentation masks, allowing evaluation of the adaptability of the models to human-defined
refinements.

D.2 EXPERIMENTAL ENVIRONMENT

The proposed framework was implemented using TensorFlow (Abadi et al., 2016) (ver. 2.12.0)
and PyTorch (ver. 2.4.0), maintaining consistency in experimental parameters across all models.
The mini-batch size was set to 8, and input images were resized to 256 × 256. Model training
was conducted using the AdamW optimizer (Loshchilov, 2017) with batch normalization (Ioffe &
Szegedy, 2015) applied to stabilize convergence. To ensure robust evaluation, we applied a k-fold
cross-validation approach with k = 5 (Kevin, 2012). The datasets used include the Inria dataset
and the LoveDA dataset. Each dataset was split into five subsets, where three splits were used for
training, one for validation, and one for testing. For real-time application deployment, the front-
end was implemented using React (ver. 18.3.1), and the back-end utilized Flask (ver. 3.0.3). The
framework was developed using Python (ver. 3.8.19) and Node.js (ver. 20.18.0), with specific
version details omitted for brevity.

All models were evaluated under the same experimental conditions using the Inria and LoveDA
datasets for cross-dataset validation. The models trained on the Inria dataset were validated on
LoveDA, and vice versa, ensuring that segmentation performance was tested across diverse ge-
ographic regions and imaging conditions. Performance was assessed using IoU, precision, and

11



ICLR 2025 Machine Learning for Remote Sensing (ML4RS) Workshop

recall metrics, ensuring a fair comparison between interactive segmentation refinement and non-
interactive adaptation approaches. Unlike existing methods, which focus solely on automatic adap-
tation, our framework integrates user-driven refinements, enabling segmentation updates based on
human-defined criteria without requiring extensive retraining. By embedding multiple segmentation
architectures, systematically analyzing the impact of user interactions, and benchmarking against
state-of-the-art adaptation techniques, our experimental setup provides a rigorous evaluation of the
effectiveness and adaptability of our interactive query-fusion framework. To evaluate the effec-
tiveness of our interactive segmentation framework, we conducted extensive ablation studies and
comparative analyses against SotA TTA models.

D.3 EXPERIMENTAL SETTINGS

To evaluate the generalization capability of our proposed method, we conducted cross-dataset val-
idation using the Inria and LoveDA datasets. The Inria dataset consists of high-resolution aerial
images primarily covering urban environments, while the LoveDA dataset contains diverse scenes,
including both urban and rural landscapes with varying spatial resolutions and domain character-
istics. To assess the robustness of our method to domain shifts, we trained the model on the Inria
dataset and validated it on LoveDA, and vice versa. This approach allows us to analyze how well the
segmentation framework adapts to unseen spatial distributions and different environmental contexts.
The model trained on Inria was tested on LoveDA, where it encountered more diverse geographic
structures, while the model trained on LoveDA was evaluated on Inria to determine its ability to
generalize to high-resolution urban imagery.

To facilitate interactive segmentation refinement, we implemented a web-based map application us-
ing React for the front-end and Flask for the back-end. The application enables users to visualize
segmentation outputs overlaid on aerial imagery and provides multiple interaction modes for refin-
ing segmentation masks. Users can modify the segmentation results via two primary mechanisms:
(1) a polygon selection tool for outlining misclassified regions, and (3) a click-based refinement
method where users indicate incorrect segmentation regions for automated correction. These user
corrections are incorporated into the query-fusion mechanism, dynamically adjusting the segmen-
tation predictions based on real-time human feedback. During inference, the system processes user
inputs by embedding corrections into the transformer-based processing pipeline. Instead of retrain-
ing the entire segmentation model, only the query-fusion module is updated, ensuring computational
efficiency while enabling interactive refinement. The web application records user interactions, al-
lowing for quantitative evaluation of segmentation performance across iterative refinements. The
front-end, built with React (ver. 18.3.1), communicates with the back-end Flask (ver. 3.0.3) server,
which processes segmentation updates in real-time as depicted in Fig. A-1.

Figure A-1: Pipeline of user interaction with online map applications.

By integrating cross-dataset evaluation with real-time user interaction, our experimental setup val-
idates the effectiveness of query-fusion for dynamic segmentation refinement. The results demon-
strate that incorporating human feedback allows for improved segmentation accuracy without re-
quiring extensive retraining, highlighting the advantages of our interactive adaptation approach.
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D.4 ABLATION STUDY

Our implementation integrates multiple baseline segmentation architectures, systematically exam-
ines the impact of user interactions, and benchmarks our approach under controlled experimen-
tal conditions. The proposed framework embeds a diverse set of baseline segmentation mod-
els, including convolutional and transformer-based architectures. Specifically, we implemented
U-Net, AttentionU-Net, SegFormer, SegNeXt, ClassTrans, CSTU-Net, and GLCANet as back-
bone networks to assess the compatibility of our query-fusion mechanism with different model
architectures. U-Net (Ronneberger et al., 2015) is a widely adopted convolutional model fea-
turing an encoder-decoder structure with skip connections, facilitating precise boundary delin-
eation. Attention U-Net (Oktay et al., 2018) enhances this design by incorporating attention mech-
anisms, improving feature selection in complex scenes. However, both models struggle with long-
range dependencies in aerial imagery. Transformer-based architectures, such as SegFormer (Xie
et al., 2021) and SegNeXt (Guo et al., 2022), leverage self-attention mechanisms to capture
global spatial relationships, yielding improved segmentation robustness across varying scales.
ClassTrans (Wang et al., 2024) introduces class-aware tokens to enhance segmentation consistency,
while CSTU-Net (Fan et al., 2023) combines convolutional and transformer components for hy-
brid feature extraction. GLCANet (Zhang et al., 2024a) further refines segmentation by aggregating
global-local contextual information.

Figure A-2: IoU values of our framework compared to baseline models.

Table 1 and appendix Fig. A-2 present the results of IoU values, demonstrating our method consis-
tently improves segmentation accuracy across all baseline models. The results indicate that applying
query-fusion for user-guided refinement leads to a significant IoU improvement. On average, our
method achieves a performance gain of approximately 5.57% across all models, demonstrating the
effectiveness of integrating interactive segmentation refinements. Notably, transformer-based mod-
els such as ClassTrans and CSTU-Net exhibit the highest improvements, with IoU increases of
5.39% and 5.41%, respectively. This suggests that self-attention mechanisms effectively capture re-
fined spatial dependencies when integrated with user-driven corrections. Traditional convolutional
models like U-Net and Attention U-Net also benefit from the refinement process, with IoU improve-
ments of 5.98% and 5.84%, respectively. Despite their reliance on local receptive fields, incorpo-
rating user modifications via query-fusion enhances their ability to refine segmentation boundaries.
Additionally, hybrid architectures such as SegFormer and SegNeXt achieve substantial performance
boosts of 5.49% and 6.40%, indicating that multi-scale feature aggregation synergizes well with
interactive corrections. The lowest performance improvement is observed in GLCANet (5.33%),
which suggests that its global-local feature aggregation approach already captures significant spatial
relationships. However, even in this case, user-guided refinements still provide measurable benefits
in segmentation accuracy.

Overall, these findings validate that our method effectively enhances segmentation accuracy across
diverse architectural paradigms. By integrating interactive corrections, query-fusion dynamically
refines segmentation outputs, surpassing static deep learning models that rely solely on pre-trained

13



ICLR 2025 Machine Learning for Remote Sensing (ML4RS) Workshop

feature extraction. The consistent performance gains across different architectures highlight the
robustness and adaptability of our approach in improving segmentation precision.

D.5 COMPARATIVE ANALYSIS

To assess the contribution of interactive learning, we conducted an ablation study by varying the level
of user interaction during segmentation refinement. We simulated user corrections by modifying seg-
mentation masks for different numbers of buildings, the number of buildings from no modification
(0-buildings) to full user correction (100-buildings). These perturbations were applied via controlled
morphological transformations to emulate real-world user adjustments. We evaluated the effective-
ness of interactive refinements by measuring segmentation performance at different levels of user
interaction, quantifying the impact of query-fusion in dynamically refining segmentation outputs.
Additionally, we explored different embedding strategies for integrating user corrections within the
transformer pipeline, ensuring that the most effective approach was selected for final deployment.
For comparative analysis, we compare it against three state-of-the-art test-time adaptation and seg-
mentation methods, each addressing domain adaptation, shape-guided refinement, and prompt-based
segmentation. Hu et al. (2021) mitigates domain shift effects by adapting a pre-trained model us-
ing unlabeled target data. It updates only batch normalization layers while employing Regional
Nuclear-norm (RN) and Contour Regularization (CR) losses to improve segmentation consistency.
This method has demonstrated effectiveness in pancreas and liver segmentation tasks. Bateson et al.
(2022) introduces a shape-guided entropy minimization approach that optimizes batch normaliza-
tion parameters during inference. Without requiring target domain training, it ensures segmentation
alignment with structural priors, achieving superior performance in MRI-to-CT cardiac segmenta-
tion and cross-site prostate segmentation. Generalizable SAM (GenSAM) (Hu et al., 2024) extends
prompt-based segmentation by eliminating manual prompts via Cross-modal Chains of Thought
Prompting (CCTP). By leveraging vision-language models, it generates automatic visual prompts
for camouflaged object detection, refining segmentation iteratively via Progressive Mask Genera-
tion (PMG).

Figure A-3: Evaluation metric values of our framework compared to SotA models.

Our method consistently outperforms TTA models in terms of Intersection over Union (IoU), Pre-
cision, and Recall, with performance improving as the number of user interactions increases as
illustrated in Fig. A-3. Ours-1, which incorporates minimal user feedback, achieves an IoU of
76.92, which is lower than TTA-1 (82.42) but demonstrates comparable precision (84.10) and recall
(90.01). As user interactions increase, segmentation accuracy improves significantly, with Ours-
10 achieving an IoU of 83.34, surpassing all TTA models. The most refined segmentation output,
Ours-100, achieves the highest IoU (88.87), Precision (92.57), and Recall (95.69), demonstrating the
benefit of iterative user-driven refinements. In contrast, TTA models exhibit varying levels of adap-
tation effectiveness. TTA-1 performs the best among TTA approaches, achieving an IoU of 82.42,
but its recall (94.94) suggests that it over-segments certain regions, leading to a potential increase in
false positives. TTA-2 and TTA-3 show slightly lower IoU scores (80.67 and 80.06, respectively),
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indicating that automatic test-time adaptation methods struggle to generalize optimally across all
segmentation scenarios without explicit user guidance.

Figure A-4: Evaluation metric values of our framework compared to SotA models.

To further assess the effectiveness of our interactive segmentation framework, we compared its per-
formance against SotA segmentation models and TTA methods in terms of IoU performance and
inference time, as shown in Fig. A-4. The x-axis represents IoU (%), measuring segmentation
accuracy, while the y-axis, in logarithmic scale, represents inference time (s), indicating computa-
tional efficiency. The results clearly demonstrate that our proposed approach achieves the highest
IoU among all models while maintaining an efficient inference time. Compared to TTA methods
(TTA-1, TTA-2, TTA-3), which show longer inference times due to their adaptation processes, our
method significantly reduces computational overhead while improving segmentation accuracy. TTA
models, though improving IoU over static models, require substantial inference time, making them
less suitable for real-time applications. Among the baseline segmentation models, transformer-
based architectures such as ClassTrans and CSTU-Net achieve relatively high IoU scores but exhibit
slower inference times compared to lighter convolutional models like SegFormer and SegNeXt.
CNN-based models, including U-Net and AttentionU-Net, have lower inference times but struggle
to maintain high segmentation accuracy. Our method, positioned in the upper-right region of the
graph, demonstrates a strong balance between accuracy and efficiency, outperforming SotA mod-
els in segmentation quality while avoiding the high computational costs associated with TTA-based
approaches.

The results clearly demonstrate that incorporating user interactions significantly enhances segmen-
tation accuracy beyond what is achievable via automated adaptation methods alone. While TTA
approaches provide moderate improvements via batch normalization tuning and entropy minimiza-
tion, they lack the ability to iteratively refine segmentation outputs based on human-defined criteria.
Our method, by leveraging user-driven query-fusion, continuously refines segmentation boundaries,
leading to higher accuracy and better precision-recall balance. Overall, these findings validate the
advantage of interactive refinement over static adaptation, reinforcing the importance of integrating
user feedback into segmentation frameworks. The ability to dynamically adjust segmentation pre-
dictions based on human corrections enables our approach to achieve superior generalization and
precision across diverse imaging conditions.
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