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ABSTRACT

Foundation models have had a significant impact across various AI applications,
enabling use cases that were previously impossible. Contrastive Visual Lan-
guage Models (VLMs), in particular, have outperformed other techniques in many
tasks. However, their prevalence in remote sensing (RS) is still limited, due to the
scarcity of diverse remote-sensing visual-language datasets. In this work we intro-
duce two novel image-caption datasets for training of remote sensing foundation
models. The first dataset pairs aerial and satellite imagery with captions generated
by Gemini using landmarks extracted from Google Maps. The second dataset
utilizes public web images and their corresponding alt-text, filtered for the re-
mote sensing domain, resulting in a diverse dataset with greater breadth in image
styles and subject matter. These datasets are used to pre-train the MaMMUT (Kuo
et al., 2023) VLM architecture, resulting in state-of-the-art generalization perfor-
mance in zero-shot cross-modal retrieval on well-known public benchmarks. Fi-
nally, we present our ongoing research to distill image-level knowledge gained in
the VLM contrastive training procedure to enhance the model’s localization abil-
ity. Specifically, we iteratively generate pseudo-labels for image regions based on
the model’s attention maps and use these labels for further training. To mitigate
noisy attention maps and create robust segmentation masks, we introduce a novel
attention-pooling mechanism called the Smooth-Attention-Operation.

1 INTRODUCTION

Foundation models have demonstrated exceptional performance serving as a basis for diverse down-
stream tasks by training on large-scale datasets. Yet, applying them to remote sensing tasks presents
unique challenges, as remote sensing data exhibits distinct characteristics, including complex spatial
relationships from orbital viewpoints and lower spatial resolution compared to standard ground-level
imagery. These differences hinder existing models optimized for ground-level perspectives and high-
resolution images. Furthermore, the remote sensing domain faces labeled data scarcity, including
limited availability of paired text-image examples. The paucity of datasets with rich textual descrip-
tions accompanying remote sensing images limits the ability to build models that comprehend the
context and nuances of the visual data.

Self-supervised learning techniques, such as contrastive spatial pre-training explored in (Mai et al.,
2023), offer a promising avenue to mitigate this issue by leveraging the inherent spatial informa-
tion within readily available unlabeled remote sensing data. As the study in Bourcier et al. (2024)
demonstrates, leveraging metadata supervision offers a promising avenue to overcome this limita-
tion, learning effective representations even when paired text-image data is scarce. These challenges
highlight the need for tailored solutions that address the specific nature of remote sensing data. Sim-
ilarly, a novel VLM, specifically designed for remote sensing is needed. Such a model will enable
more accurate and insightful analysis for a wide range of applications using remote sensing imagery,
including open-vocabulary object detection, zero-shot image segmentation, text-to-image generation
and editing, and so on. Recent research like GeoCLIP (Vivanco Cepeda et al., 2023) and SatCLIP
(Klemmer et al., 2024) exemplify the growing recognition of this need, exploring CLIP-inspired
methods and location embeddings specifically for geospatial understanding. These efforts, while
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promising, also underscore the ongoing need for more generalized and robust VLMs in the remote
sensing domain, capable of handling the unique challenges of this data.

Recent advances in VLMs have shown substantial benefits across numerous natural images tasks.
CLIP (Radford et al., 2021) was the first to utilize contrastive loss, aligning images with their corre-
sponding textual descriptions in a shared embedding space. BLIP (Li et al., 2022) introduced a boot-
strapping mechanism to refine noisy captions, further enhancing performance in vision-language
tasks. SigLip (Zhai et al., 2023) proposed a sigmoid loss function for language-image pre-training,
improving alignment and robustness, particularly in handling diverse and noisy datasets. MaM-
MUT (Kuo et al., 2023) presented a streamlined architecture with a vision encoder and text decoder,
achieving state-of-the-art performance across diverse multi-modal tasks, including image-text re-
trieval, video question answering, and open-vocabulary detection. SigLiT (Zhai et al., 2022) (Sig-
moid Loss with Locked-Image Tuning) uses a pretrained Vision Transformer (ViT) from ImageNet-
22K and fine-tunes only the text encoder on image-caption pairs. It employs a simplified loss func-
tion for efficient training, achieving strong zero-shot performance.

Several studies have been exploring the application of VLMs on the remote-sensing domain. Re-
moteCLIP (Liu et al., 2023) adapts CLIP for remote sensing, leveraging image-text pairs derived
from existing remote-sensing datasets. SkyScript (Wang et al., 2023) aligns OpenStreetMap fea-
tures on remote sensing images to create a template-based RS image captioning dataset. Several
works used LLM-modified RS-datasets to train RS-VLMs (e.g, LHRS bot by Muhtar et al. (2024),
GeoChat by Kuckreja et al. (2023), Geo-RSCLIP by Zhang et al. (2024)). However, the advances
in remote-sensing foundation models demonstrated by these studies remain constrained by the scale
and semantic diversity of these datasets, leaving a large margin to improve generalized VLMs for
remote sensing.

2 METHODOLOGY

This section introduces two methods for creating unique remote sensing vision-language datasets to
address the absence of rich textual descriptions in remote sensing images and the scarcity of labeled
data. These datasets are then used to train a compact yet robust 800M-parameter VLM for remote
sensing, designed with the potential to run efficiently on resource-constrained devices. We leverage
the pre-trained foundation VLM, MaMMUT (Kuo et al., 2023), which is a model pre-trained with
a contrastive learning approach. To fine-tune it on our two novel datasets, namely RS-WebLI and
RS-Landmarks, we use the shape-optimized 400M-parameter ViT as a vision encoder (Dosovitskiy
et al., 2021), while the language model has additional 400M parameters.

2.1 REMOTE-SENSING DATASET CREATION

RS-Landmarks Dataset. The RS-Landmarks dataset is a novel remote-sensing dataset comprised
of 18 million images with high-quality textual descriptions generated with Gemini 1.5 Pro (Gemini
Team Google, 2023) as a teacher model. Initially, the satellite and aerial images are aligned with
locations and footprints of places and landmarks extracted from Google Maps1, found within the
associated images. We feed this information, alongside with the image, to the Gemini model, and
use a tailored, curated prompt to generate concise captions for each image. This process yields
high-quality and informative captions, describing a diverse set of object categories.

RS-WebLI Dataset. The RS-WebLI dataset is comprised of aerial and satellite imagery taken
from the WebLI dataset (Chen et al., 2023). We generated RS-WebLI by training aerial and over-
head classifiers and thereafter using the classifiers to filter the WebLI dataset. First, we manually
classified several hundred RS images in the WebLI dataset, using a simple caption heuristic and
manual inspection of the dataset. Second, using the manually labeled sample, we trained an im-
age classifier for remote sensing images and generated a dataset consisting of 40K images. Third,
we harnessed the capabilities of crowd computing and initiated a labeling task wherein participants
classified images as overhead aerial or satellite imagery, angled aerial imagery, or none of the above.
The results were combined with random negatives, yielding a 60K labeled dataset. Lastly, using the
large dataset, we trained new aerial and overhead classifiers and applied them across the entirety of
WebLI, filtering the data of which we chose 3 million clean images, creating the RS-WebLI dataset.

1Google Maps data used with permission from Google
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2.2 TRAINING

Following Zhai et al. (2023), Kuo et al. (2023) and Chen et al. (2022), we start with the MaMMUT
model, pre-trained for 500K steps on the WebLI dataset, denoted as the MT-WebLI model. We
then train two baseline models MT-RSWebLI and MT-RSLandmarks on the RS-WebLI and on RS-
Landmarks datasets respectively, each for 20K steps. Finally, we train the combined MT-RSWebLI-
RSLandmarks model in an optimized tri-step curriculum: (i) for 20K steps over the RS-WebLI
dataset, (ii) for additional 20K steps over the RS-Landmarks dataset, and (iii) for another 5K steps
on a mix of the two. All training steps (including the pre-training) were done with a batch size of
16K, using a Sharded Adafactor optimizer with Adam learning rate decay. The learning rates used
are 1e-3, 1e-6, 5e-6 and 1e-7, for the WebLI pre-training, RS-WebLI training, RS-Landmarks, and
mix phases correspondingly. In the mix training phase, we use a mix of 97% RS-Landmarks and
3% of RS-WebLI.

2.3 ZERO-SHOT EVALUATIONS

We evaluated the zero-shot retrieval performance of our proposed model, as presented in Table 1.
We used a nearest neighbor approach on the output embeddings of the model to match each im-
age to a class. Following standard practice, we report the average top-1, top-5, and top-10 recall
scores. If a dataset provided multiple captions for a single image, we considered the retrieval a suc-
cess if any of the correct captions were selected. The table shows that MT-RSWebli-RSLandmarks
outperforms all other public models. Moreover, using both datasets is essential to obtain optimal re-
sults. We demonstrate the benefit of utilizing our remote sensing datasets to train a model which is

Table 1: Average of top-1/5/10 of zero-shot retrieval results for image to text (I2T) and text to image
(T2I). Our result are compared to PIR-ITR Pan et al. (2024), SkyScript Wang et al. (2023), and
Zhang et al. (2023) (Geo-RSClip). Our base model was trained on the WebLI dataset.

Model Name RSICD UCM Cap. NWPU RSITMD
I2T T2I I2T T2I I2T T2I I2T T2I

PIR-ITR 24.43 25.77 - - - - 38.64 39.85
SkyScript SkyCLIP-30 23.70 19.97 72.22 59.33 - - 30.75 30.58
Geo-RSClip+RS5M 26.41 25.96 - - - - 33.33 38.02

MT-WebLI 23.88 24.17 69.21 66.50 20.33 23.18 28.83 32.70
MT-RSWebLI 26.68 25.09 72.38 65.96 24.62 22.60 32.15 35.57
MT-RSLandmarks 33.12 32.98 72.38 70.91 40.10 32.15 41.96 42.30
MT-RSWebli-RSLandmarks 33.33 33.59 74.76 71.79 41.44 32.28 42.63 42.58

capable of generalizing on the remote-sensing domain. This result is further substantiated by show-
ing that the enhanced accuracy over the non-RS baseline is kept even when testing on categories
which were not explicitly presented during training. To illustrate this, we created RS-Landmarks-
89, an image classification benchmark dataset, comprising 89 manually chosen landmark categories
from the RS-Landmarks dataset, where each image is centred on one of the landmark types. Com-
plementarily, the RS-Landmarks-89-holdout image-text dataset was created by removing images
from the RS-Landmarks dataset that contained the previously mentioned categories. To evaluate
the zero-shot classification abilities on unseen categories, we fine-tune the MT-WebLI model with
the RS-Landmarks-89-holdout dataset. We evaluate the resulting model on the RS-Landmarks-89
classification dataset using simple nearest-neighbor approach.

Unsurprisingly, Table 2 shows that a model tuned on the RS-Landmarks dataset outperforms the
baseline, general purpose MT-WebLI model on the RS-LandMarks-89 dataset. The ability to gen-
eralize on the remote sensing domain is evaluated by the model tuned on the RSLandMarks-89-
holdout dataset (2nd row). The performance of this model, which was not trained on any of the
89 categories, is significantly higher than the MT-WebLI baseline, and is close to that of the full
MT-RSLandmarks.

3 SELF-SUPERVISED ZERO-SHOT LOCALIZATION VIA ITERATIVE
REFINEMENT

In this section, we present the ongoing effort to distill image-level knowledge gained in the VLM
contrastive training procedure to enhance the model’s localization ability. Enhanced localization is
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Table 2: Generalization to unseen classes. Nearest neighbour classification accuracy on the hold-
out dataset. The 89 classes in the RS-Landmarks-89 are excluded from the RS-Landmarks-89-
holdout training-set.

Model Name RS-Landmarks-89
MT-WebLI 13.78
MT-WebLI tuned on RSLandmarks-89-holdout 21.38
MT-WebLI tuned on RSLandmarks 25.42

essential for performance in downstream vision tasks, notably segmentation. Applying the method-
ology described in the previous section, with an additional attention pooling head similarly to
SigLIP2, reveals an important insight, that despite being explicitly trained for image-level on broad
captions, the model appears to classify individual patches at the attention-pooling layer. This phe-
nomenon is illustrated in Figure 1, where the similarity is captured at the patch-level.

We build upon this phenomenon to present a pseudo labeling algorithm that yields segmentation
masks for a query of interest. Our algorithm begins with the model receiving the text query along
with a stack of images. The query is paired with the images during inference, where for each image
we create a similarity-based attention map (Figure 1). This map segments the associated patches that
match the text query within every image. A pre-defined adaptive similarity threshold is then applied
to identify patches whose similarity to the query exceeds the threshold. We propose to use these
pseudo-labeled samples to fine-tune the model. This self-supervised process is repeated iteratively,
with the adaptive similarity threshold gradually increasing as the model achieves higher accuracy in
producing robust segmentation masks for arbitrary text queries.

To mitigate the noise in the segmentation maps, we introduce a novel approach called Smooth-
Attention-Operation. This method differs from standard attention mechanisms by applying the at-
tention pooling layer, not to the entire input key, but rather to smaller, sliding window blocks of
the key. The sliding window traverses the image, pooling attention values within its boundaries.
Smaller windows capture highly localized attention, while larger windows incorporate more contex-
tual information from neighboring regions. This approach balances local detail with broader context,
offering a trade-off between per-patch similarity and full-image attention.

Figure 1: Attention similarity maps for text queries (’Tennis’, ’Road’, ’Car’) in different images,
selected from the DIOR dataset (Zhan et al., 2023).

4 DISCUSSION

We tackled the challenges of applying Vision-Language Models (VLMs) in remote sensing by in-
troducing two new datasets: RS-WebLI and RS-Landmarks. RS-WebLI is a curated large-scale
collection of aerial and satellite imagery, while RS-Landmarks includes high-quality captions gen-
erated using Google Maps data by the Gemini teacher model. These datasets enable VLM training
optimized for remote sensing, improving generalization. Our VLM foundation model demonstrated
state-of-the-art cross-modal retrieval performance on public benchmarks. Additionally, we devel-
oped a self-supervised zero-shot retrieval scheme for pseudo-labeling, allowing segment-level clas-
sification in the attention-pooling layer.

2Constructed by the shape-optimized version, SoViT-400m architecture, as in Alabdulmohsin et al. (2024)
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A APPENDIX

A.1 ZERO-SHOT CLASSIFICATION EVALUATION

We evaluate the model’s zero-shot classification performance on remote sensing images without
prior training on those specific classes using several remote sensing image classification datasets,
presented in Table A.1. For each dataset, we created a set of descriptive sentences in the format ”An
aerial image of <class name>.” Then, using a nearest neighbor algorithm, we determined the best
matching class for each image based on these sentences.

Table 3: Comparison of the Top-1 accuracy zero-shot classification performance, results taken from
papers.

Model Name FMOW SkyScript RESISC45 UCM Class. AID
SkyScript 28.04 (70.89) 70.94 -
RS-CLIP - 68.84 71.35 74.28 / 78.00 70.51
GeoRSCLIP-VitL - - 71.89 - 76.33
GeoRSCLIP-VitH - - 73.83 - 73.72
RemoteCLIP - - 79.84 - 91.3
GeoChat (7B) - - - 84.43 72.03
LHRS-Bot (7B) - - - - 91.26

MT-WebLI 37.58 58.66 66.93 76.52 71.46
MT-RSWebLI 42.73 65.16 70.91 83.52 75.78
MT-RSLandmarks 42.93 66.31 68.55 77.67 73.15
MT-RSWebli+RSLandmarks 47.24 69.46 72.31 80.29 71.96
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