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ABSTRACT

Foundation models have advanced machine learning across various modalities,
including remote sensing. Recent efforts focus on developing specialized mod-
els using masked image modeling techniques. This work explores whether spe-
cialized pretraining, such as training on large-scale remote sensing datasets or
domain-specific techniques, is necessary for remote sensing foundation models.
We introduce a benchmark evaluating model performance on tasks like change
detection and scene classification using RESISC45, UC Merced, LEVIR-CD, and
CDD datasets. We assess recent foundation models and analyze the impact of var-
ious pretraining and fine-tuning choices. Specifically, we pretrain self-distillation-
based self-supervised models on aerial imagery, including variations without scale
augmentations and with a pretrained mask decoder module.

1 INTRODUCTION

The rapid advancements in remote sensing technologies have led to an increased reliance on foun-
dation models for interpreting vast amounts of imagery data captured by satellites (e.g., Sentinel-1,
Sentinel-2) (Akiva et al., 2022; Mall et al., 2023; Mañas et al., 2021; Wanyan et al., 2023; Cong
et al., 2022; Reed et al., 2023; Sun et al., 2023; Hong et al., 2024; Muhtar et al., 2023; Mendieta
et al., 2023; Tang et al., 2023; Fuller et al., 2023; Bao et al., 2023; Guo et al., 2023; Wang et al.,
2023b; Bastani et al., 2023). Usually, this data is raw and unlabeled, whereas creating labels is
time-consuming and expensive. Many critical tasks, like change detection, image classification, and
semantic segmentation (Used for land cover mapping, disaster monitoring, urban growth, vegetation
health, and terrain analysis), require abundant labeled data for effective model training. In line with
recent advancements in self-supervised and semi-supervised learning for vision tasks, the current
trend is to train a self-supervised model (either contrastive or based on masked image modeling)
which later serves as a backbone for subsequent downstream tasks. Subsequently, fine-tuning these
backbones with a small labeled data produces a strong model for downstream tasks.

We evaluate the performance of foundation models for remote sensing imagery on scene classifica-
tion (Cheng et al., 2017; Yang & Newsam, 2010; Sumbul et al., 2019) and change detection (Chen &
Shi, 2020; Lebedev et al., 2018; Caye Daudt et al., 2018), assessing their generalization across im-
age resolutions. To analyze the impact of design choices, we pretrain a self-distillation-based model
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with variations, including one without scale augmentations and another with a pretrained mask de-
coder module. Our contributions include (a) developing a benchmark to evaluate remote sensing
foundation models’ generalization across scales, (b) pretraining multiple iBOT-based (Zhou et al.,
2022) models, a self-distillation based ViT (Dosovitskiy et al., 2021), on MillionAID (Long et al.,
2021), including one with a pretrained UperNet-like (Xiao et al., 2018) head for segmentation and
change detection, and (c) demonstrating that existing foundation models (Bao et al., 2023; Bastani
et al., 2023; Mendieta et al., 2023; Zhou et al., 2022) still have significant room for improvement in
generalization and transferability to downstream tasks. The related work is discussed in Appendix A

2 EVALUATION

Generalization can be evaluated across various aspects, including adaptation to different spatial res-
olutions, spectral bands, seasonal variations, times of day, and diverse geographical locations. How-
ever, many of these assessments are constrained by dataset availability. In this work, we focus on
evaluating the foundation model’s ability to generalize to unseen resolutions across two key tasks:
scene classification and change detection. We emphasize that our evaluation focuses solely on gen-
eralization to lower spatial resolutions. Low-resolution satellites, such as Landsat and Sentinel,
provide publicly available imagery, whereas higher-resolution imagery is often more difficult to
obtain. In many scenarios, image labeling is performed on high-quality imagery, but at test time,
the images may come from satellites with lower resolution. Therefore, we expect models to per-
form robustly under such distribution shifts. While generalization to higher spatial resolutions can
also occur in practical applications, retaining performance at higher resolutions is trivial by simply
downsampling images to the original resolution.

Scene Classification. We use two commonly used benchmark datasets in the literature: RE-
SISC45 (Cheng et al., 2017) and UC Merced (Yang & Newsam, 2010) (Appendix B). Performance
is measured at the original resolution and at reduced resolutions (1/2, 1/4 and 1/8). Images are
downscaled by a factor of 1/x and then upscaled back by x, preserving pixel count but reducing
quality. This simulates lower-resolution satellite imagery. As an evaluation metric, we plot a curve
with the scaling factor (1/8, 1/4, 1/2, 1) on the x-axis and accuracy on the y-axis. The area under
this curve (AUC-Acc) serves as our final metric. We restrict the models to use 50 GFLOPs on a
single image. This threshold is independent from the neural architecture, and ViT-B/16 on an image
of size 256x256px is within the limits.

Change Detection. We use another two commonly used datasets: CDD (Lebedev et al., 2018) and
LEVIR-CD (Chen & Shi, 2020); see Appendix B. We create partially scaled versions of the test sets
of these datasets. We maintain the scale of the first image unchanged, while for the second image,
we distort it by reducing its quality by a factor of 2, 4, and 8. Note that a similar setup has been
first proposed in (Liu et al., 2022). We evaluate on the original resolution, as well as on the scaled
versions. We compute micro-averaged F1 score for each of the versions. Finally we draw a curve
where x-axis is the scaling parameter and y-axis is the micro-averaged F1 score for each version.
We report the area under this curve as our final metric, and call it AUC-F1. For this benchmark, we
restrict the models to use 100 GFLOPs on a pair of images.

3 FACTORS CONTRIBUTING TO THE PERFORMANCE

iBOT pretraining. We analyzed various factors of generalization of fine-tuned models by pre-
training several iBOT models on satellite imagery. As shown by Vanyan et al. (2023a), self-

LEVIR-CD 1:1 1:2 1:4 1:8 AUC-F1

Without Mask Decoder 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2
With Mask Decoder 90.6± 0.1 89.2± 0.1 66.6± 5.0 4.3± 1.1 69.1± 1.0

CDD
Without Mask Decoder 97.4± 0.0 96.8± 0.0 91.4± 0.6 79.2± 0.9 87.7± 0.2
With Mask Decoder 97.1± 0.0 96.7± 0.0 91.5± 0.5 80.1± 0.9 87.7± 0.2

Table 1: The effect of a pretrained mask decoder on change detection tasks. All models are iBOTs
pretrained on MillionAID with scale augmentation.
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distillation models like iBOT outperform MIM-based models in learning robust image represen-
tations. We pre-trained iBOT with the MillionAID dataset (Long et al., 2021), dividing images into
a maximum of 550-pixel square tiles, yielding 2106700 images. Since the original iBOT pre-trained
on ImageNet is already strong, we included it in our comparisons. We trained iBOT for 200 epochs
with peak learning rate 5×10−4 that linearly decreases to 2×10−6 over 5 warmup epochs. All Ran-
domResizeCrops were converted to RandomCrops in the transforms. The training was conducted
using PyTorch Distributed Data Parallel to utilize multiple GPUs and used 100 batch size per GPU.
The experiments were performed on NVIDIA DGX A100 at the local university and an instance
with 8 NVIDIA H100s kindly provided by Nebius.ai. The loss curve followed the typical pattern of
similar networks (Figure 3 in Appendix). The resulting model is labeled as iBOT-MillionAID.

Augmentation. We analyze scale augmentation’s impact on robustness to scale changes. iBOT’s
augmentation module resizes and crops images. We pre-trained two iBOTs: with and without re-
sizing. The hypothesis is that scale augmentation improves robustness, transferring to fine-tuned
models and increasing AUC scores. We also test scale augmentation during fine-tuning by shrinking
images (or the second image in change detection) by 2, 4, and 8 times, then resizing them back
These serve as an upper bound for scale robustness (see Table 5 of Appendix).

When augmentations are not applied during fine-tuning, augmentations during pretraining at 1:1
and 1:2 resolutions consistently give better results across all datasets. However, this trend does not
hold for smaller resolutions. Augmentations during fine-tuning have significantly higher impact on
the generalization. In case of classification, we leverage 2×, 4×, and 8× versions of the original
dataset. Although we obtain 4× more data, this does not add new information, and we keep the
total number of optimization steps constant by decreasing the number of epochs by 4×. In case of
change detection, we randomly choose one of the augmented versions of the second image at each
epoch, and train for the same number of epochs as in the experiment without augmentations. These
experiments indicate that scale augmentation during pretraining still does not produce generalization
capabilities at a level comparable to what one can obtain by augmenting during fine-tuning.

RESISC45 AUC-ACC

Full fine-tuning 93.4± 0.2 84.3± 1.2 47.4± 5.6 18.7± 2.0 66.2± 1.8
Frozen backbone 94.6± 0.1 92.2± 0.2 66.5± 1.5 25.1± 1.3 73.8± 0.5

LEVIR-CD 1:1 1:2 1:4 1:8 AUC-F1

Full fine-tuning 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2
Frozen backbone 84.4± 0.0 84.4± 0.2 61.6± 7.8 3.4± 4.0 64.7± 2.0

UC Merced AUC-ACC

Full fine-tuning 98.7± 0.8 97.9± 1.3 84.3± 4.3 46.0± 8.3 82.9± 1.0
Frozen backbone 99.5± 0.1 99.2± 0.3 75.7± 2.9 31.3± 3.9 80.2± 0.7

Table 2: The impact of full fine-tuning on loss. All models are iBOTs pretrained on MillionAID with
scale augmentation. No scale-augmentation was performed during fine-tuning (or linear probing).

Pretrained Mask Decoder. We extend iBOT-MillionAID with a pretrained mask decoder for seg-
mentation and change detection tasks, requiring a binary mask, and leverage a module pretrained
on large datasets. Since MillionAID lacks segmentation or change masks, we use iBOT’s teacher-
student framework to generate them. The teacher processes two global crops, while the student
handles those plus ten local crops. We map the second global crop’s mask to the first crop’s coordi-
nate space as the target mask. Patch representations from both crops are concatenated and fed into
an UperNet (Xiao et al., 2018) decoder to generate the binary mask with a pixel-wise cross-entropy
loss. Note that UperNet uses features from ViT layers 3, 5, 8, and 12. We explored two methods to
integrate mask loss into iBOT training: using only the student for patch representations or incorpo-
rating the teacher for one. The first approach led to unstable training with spiking activations, while
the teacher-student method ensured stable joint training. The final architecture is shown in Fig. 1.

We used 2.5 × 10−4 peak learning rate and cosine decay with 5 warmup epochs. The model is
trained for ≈ 800 H100 GPU hours on an instance with 8 NVIDIA H100s provided by Nebius.ai.

As shown in Table 1, there is a slight improvement in performance and significantly lower variance
across all scales with the pretrained mask decoder on LEVIR-CD. There is no visible change on
CDD. This can be explained by the large size of the CDD dataset. It is likely that the additional
power of the pretrained models is not critical when the fine-tuning dataset is large enough. Another
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Figure 1: iBOT pretraining architecture with an additional UperNet mask decoder that is trained
using the “overlap loss”. There are two global and eight local crops of the original image that pass
through Teacher (T) and Student (S) networks. Dotted lines imply that only the representations of
the last layers are used. Solid lines imply that representations of four layers are used (as an input to
UperNet). Red lines correspond to patch representations, the blue lines correspond to CLS vectors.
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Figure 2: The results of the baselines on our benchmark tasks for generalization across image reso-
lution. The top row shows classification on RESISC and UC Merced, while the bottom row shows
change detection on CDD and LEVIR-CD. X-axis: Scale of Distortions, Y-axis: Micro-F1 Scores.

potential way to enhance the impact of pretrained decoders is to pretrain it with denser supervi-
sion signal. While we used a binary mask calculated during pretraining, Wang et al. (2024) uses
segmentation pseudo-labels generated by a strong domain-agnostic segmentation model.

Catastrophic Forgetting During Fine-Tuning. Pretrained models may lose generalization during
fine-tuning. To assess this, we repeat fine-tuning with frozen backbones, ensuring the final linear
layer or decoder lacks exposure to diverse scales. Table 2 shows that the effect varies by dataset. For
RESISC45, freezing the backbone improves robustness to lower resolutions. LEVIR-CD follows
this trend at 1:4 and 1:8 resolutions, though full fine-tuning performs better at 1:1 and 1:2. In
contrast, UC Merced benefits from a frozen backbone at higher resolutions, while full fine-tuning
excels at lower resolutions.

4 BASELINES

We used SatlasPretrain (Bastani et al., 2023) trained on high-resolution imagery (Aerial) and on the
RGB subset of Sentinel-2 imagery (Sentinel2), GFM (Mendieta et al., 2023), and general-purpose
iBOT pretrained on ImageNet as baseline. Each of these models have a different training paradigm
and pretraining dataset. iBot is a self-supervised method pretrained on ImageNet. GFM combines
two concepts: self-supervised pretraining on a custom-collected dataset, GeoPile, and continual
pretraining to retain knowledge obtained from pretraining on ImageNet. SatlasPretrain is pretrained
on a custom-collected dataset, Satlas, in a supervised manner. Prithvi (Jakubik et al., 2023) is a
modification of a MAE model to support 3D inputs with 6 channels.

Experimental Setup. To adapt the models for classification, we add a linear layer on top of the
[CLS] token representation, if available, or on top of the global average pooled vector of all patch
representations. To test the models for change detection, we take the backbone, which is either a
Swin Transformer, or a ViT, and integrate the UperNet head (Xiao et al., 2018). The two source
images go through identical backbones, and the resulting representations are substracted from each
other and passed to the head. In the case of ViTs, we use an additional neck module between the
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backbone and UperNet. The backbone is initialized with the pre-trained weights and further fine-
tuned using the change detection datasets. In case of our iBOT trained on MillionAID, the neck
and the head modules are also initialized, and we take the concatenation of features instead of the
difference. For more details see Appendix C.

Results and Conclusions. The results are shown in Figure 2, (more detailed results are in Table 3
in Appendix). The general conclusion is that all tested models struggle with generalizability across
scales. There are cases where the same model with a frozen backbone performs slightly better than
its fine-tuned counterpart (e.g. SatlasPretrain and DINOv2). There is a noticable performance gap
for classification, with the SatlasPretrain model, which could be due to its supervised pretraining.
However, we can observe that, when fine-tuned on larger datasets, the weakness of supervised pre-
training becomes less significant, as seen with SatlasPretrain on BigEarthNet. As mentioned in some
studies (He et al., 2022; Vanyan et al., 2023b), models trained with masked image modeling exhibit
their advantages when fully fine-tuned; their representations are not designed for linear probing.

Compute constraints. Foundation models should target specific compute requirements. Many
downstream applications require the models to run on low power devices or need to support large
volumes of data in deployment, and hence require limited number of FLOPs per image. It is im-
portant to note that this requirement refers to the fine-tuning stage and the deployment of the final
model, and not to the pretraining process. For example, DINOv2 (Oquab et al., 2023) has a ViT-B
version which is distilled from a larger ViT-g model. While the large model was trained using hun-
dreds of GPUs, the distilled version can be easily fine-tuned on a single consumer-grade GPU. To
keep the comparisons fair, for all models, we relatively small versions with around 100M parameters
and trained on fewer than 3M images.
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A RELATED WORK

Some recent developments in the field include various approaches using either supervised or self-
supervised learning algorithms. Surprisingly, for some transformer-based models, performance on
ImageNet (Deng et al., 2009) in certain instances outperforms those pre-trained on remote sensing
imagery (Vanyan et al., 2023a). The effect of pre-training on ImageNet vs a large remote sensing
scene recognition dataset is studied in Remote Sensing Pretraining (RSP) (Wang et al., 2023a). To
serve as a pre-training dataset, some existing techniques involve gathering data from available open-
source large remote sensing datasets and employing it to train the self-supervised algorithm. The
two main methods to train self-supervised foundation models are contrastive learning-based methods
and generative-based methods (masked image modeling).

Similar to classical contrastive learning-based methods, recent advancements include SECO (Mañas
et al., 2021), CACo (Mall et al., 2023), MATTER (Akiva et al., 2022), Dino-MC (Wanyan et al.,
2023), and (Tolan et al., 2024), among others. Another line of research builds on Masked Autoen-
coders (MAE) (He et al., 2022), a successful foundation model utilizing masked image modeling,
where the pretext task is to reconstruct an image from its masked version. Notable extensions in-
clude SatMAE (Cong et al., 2022), Scale-MAE (Reed et al., 2023), RingMO (Sun et al., 2023),
and SpectralGPT (Hong et al., 2024). A more recent direction aims to integrate reconstruction-
based and contrastive learning-based approaches. Notable examples include CMID (Muhtar et al.,
2023), GFM (Mendieta et al., 2023), SECO (Mañas et al., 2021), CROMA (Fuller et al., 2023), and
Cross-Scale-MAE (Tang et al., 2023). Mendieta et al. (2023) observed that some state-of-the-art
methods for aerial imagery often do not outperform ImageNet-22k pretrained Vision Transformers
(ViTs). Another research focus is multi-task pretraining, with works such as Satlas (Bastani et al.,
2023) and Multi-Task Pretraining (MTP) (Wang et al., 2024). Recently, for change detection, an
end-to-end super-resolution-based network, SRCDNet (Liu et al., 2022), was introduced to address
change detection across varying image resolutions. We extend this idea to additional classification
and change detection datasets.

B DATASETS

RESISC45 (Cheng et al., 2017) and UC Merced (Yang & Newsam, 2010) datasets contain
256x256px images. Image resolution is 30cm/px for UC Merced and varies 20-600cm/px for RE-
SISC45. Both datasets use RGB bands only. We take the splits defined in (Neumann et al., 2019).
The LEVIR-CD dataset (Chen & Shi, 2020) comprises a substantial collection of bitemporal Google
Earth images. It includes 637 image pairs, each sized 1024 × 1024px, with 400 images designated
for training. The images in the training set have a resolution of 50cm/px. Originating from 20 dis-
tinct regions within cities in Texas, USA, these images showcase the construction-induced changes.
The fully annotated LEVIR-CD dataset encompasses a total of 31, 333 individual changed buildings.
The changes in the LEVIR-CD dataset primarily come from the construction of new buildings. The
average size of each changed area is approximately 987 pixels.
The CDD (Lebedev et al., 2018) dataset contains season-varying remote sensing images of the same
region, obtained from Google Earth (DigitalGlobe). The dataset comprises 16, 000 image sets (two
images of the same location and the annotated change), each with an image size of 256× 256 pixels
and 0.03-1m/px ground sample distance.
Onera Satellite Change Detection (OSCD) dataset contains pairs of aerial images of the same lo-
cation captured at different times, with changes manually annotated at the pixel level (Caye Daudt
et al., 2018). The dataset contains images from a total of 24 cities, divided into smaller chunks
(192 × 192) of images. Similar to the classification benchmark, we train on the RGB channels and
evaluate on four tri-channel triplets and one bi-channel pair: RGB, RGE1, RE1E2, N’S1S2, and
VV VH (bi-channel). We note that for the evaluation, we always keep the first picture as RGB and
the second figure with the corresponding band channels. We compute the micro F1 score for each
experiment and report the average over these five values.
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C IMPLEMENTATION DETAILS

All the codes for pretraining, as well as the benchmarks proposed by us with all the hyperpa-
rameters, can be found at: https://anonymous.4open.science/r/rs_foundation_
models-42DC/README.md.

C.1 CLASSIFICATION

We perform two kinds of fine-tuning: full fine-tuning and linear probing. For both setups, we
train for 100 epochs. For all experiments in the full fine-tuning setup or linear probing, we eval-
uate using the last checkpoint. However, for full fine-tuning on the BigEarthNet dataset, we se-
lect the best checkpoint based on performance on the validation set. In all experiments within
the full fine-tuning setup, we use the AdamW optimizer with a learning rate of 10−4 employing
WarmupCosineAnnealing scheduling and an estimated minimum value of 10−5. In experiments
within the linear probing setup, we use the AdamW optimizer with a learning rate of 10−3 employ-
ing MultiStep scheduling and an estimated minimum value of 10−5.

In the linear probing setup for the Prithvi model, we conducted a grid search to optimize
the hyperparameters. The optimization process involved testing three different optimizers:
{Adam,AdamW,SGD}. For the learning rate, we evaluated three values: {10−3, 10−4, 10−6}
setting one of the following schedulers: {MultiStep,WarmupCosineAnnealing}. We selected
the AdamW optimizer with a learning rate of 10−3 and the WarmupCosineAnnealing sched-
uler for our final configuration based on the performance on the validation set. For linear probing
with the ChannelVit model, we use the initial hyperparameters for linear probing provided by the
authors and perform the same grid search. Ultimately, we choose the Adam optimizer with an initial
learning rate of 10−3 and MultiStep scheduling.

C.2 CHANGE DETECTION

For change detection experiments, we train our models for 200 epochs. We use the AdamW op-
timizer with a learning rate of 6 × 10−5 along with WarmupCosineAnnealing which includes
warmup steps of 10 and batch size of 32. For experiments on OSCD dataset we choose learning rate
3× 10−5 decrease the training epochs to 100 and use warmup steps of 5 with a batch size of 4.

D DETAILED RESULTS

In Table 3 we present the benchmark results for proposed and existing models in change detec-
tion (LEVIR-CD and CDD) and classification (RESISC45 and UC Merced). For classification, we
demonstrate results for both full fine-tuning and linear probing. All experiments are conducted with
scale distortions of 1:1, 1:2, 1:4, and 1:8. The AUC-F1 score is reported for change detection, and
the AUC-ACC score is reported for classification. For change detection, we compare iBOT trained
on ImageNet, our trained iBOT for MillionAID, Satlas, and GFM. For the LEVIR-CD dataset, the
results are generally comparable across methods. However, GFM shows a clear advantage over the
other methods for the 1:2 and 1:4 scale distortions. Specifically, while all four methods produce
comparable results at 1:2, GFM demonstrates a clear advantage at 1:4. However, we remark that the
pretraining dataset for GFM GeoPile contains RESISC45, which could possibly cause its superior
performance over the other methods. For CDD dataset, we observe that all the results are compara-
ble, however, we observe that GFM does not have superior performance over the other methods. The
little AUC-F1 score difference between various scale distortions could be explained by the fact that
the CDD dataset contains samples from different GSD (0.03m-1m). For classification, we compare
iBOT trained on ImageNet, our trained iBOT for MillionAID, the two versions of Satlas and GFM.
We observe that for iBOT (both trained on ImageNET and MillionAID) linear probing has a clear
advantage over full-finetuning for lower resolutions.

In Table 4, we report the performance of our trained iBOT on the MillionAID dataset, comparing
results with and without augmentations, as well as between a frozen backbone or linear probing and
full fine-tuning. For change detection on the LEVIR-CD dataset, we observe that full fine-tuning
has a clear advantage over a frozen backbone. Additionally, we note that augmentations do not
improve performance for this task. For the classification task (RESISC45 and UC Merced), we
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Table 3: Benchmark Results for Change Detection (LEVIR-CD, CDD) and Classification (RE-
SISC45, UC Merced) tasks with Different Scale Distortions.

LEVIR-CD 1:1 1:2 1:4 1:8 AUC-F1
iBOT-ImageNet 90.7± 0.1 87.6± 0.5 40.2± 12.0 2.0± 1.4 63.3± 2.5
iBOT-MillionAID 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2
SatlasPretrain (S2 SwinB SI RGB) 87.1± 3.2 84.4± 3.5 51.5± 12.4 12.6± 1.8 64.6± 2.9
GFM 90.3± 1.1 88.6± 1.0 72.3± 1.5 6.2± 1.1 70.1± 0.5
Prithvi 85.2± 0.1 84.4± 0.1 76.4± 1.1 14.5± 1.2 69.1± 0.4
DINOv2 88.0± 0.1 86.5± 0.2 70.4± 1.5 12.2± 2.5 69.1± 0.6

CDD AUC-F1
iBOT-ImageNet 97.3± 0.0 96.6± 0.0 89.7± 0.2 76.9± 0.4 87.0± 0.0
iBOT-MillionAID 97.4± 0.0 96.8± 0.0 91.4± 0.6 79.2± 0.9 87.7± 0.2
SatlasPretrain (S2 SwinB SI RGB) 96.0± 0.0 95.1± 0.0 90.4± 0.3 82.7± 0.4 86.9± 0.1
GFM 96.8± 0.0 96.0± 0.1 88.9± 0.3 78.0± 0.6 86.6± 0.2
Prithvi 90.9± 0.2 90.5± 0.2 88.5± 0.3 82.9± 0.8 83.6± 0.3
DINOv2 92.4± 0.0 91.3± 0.1 87.5± 0.1 78.2± 0.1 83.5± 0.0

RESISC45: full fine-tuning AUC-ACC
iBOT-ImageNet 93.8± 0.2 84.9± 0.8 46.8± 3.3 18.1± 0.7 66.3± 0.9
iBOT-MillionAID 93.4± 0.2 84.3± 1.2 47.4± 5.6 18.7± 2.0 66.2± 1.8
DINOv2 94.1± 0.4 84.3± 1.7 46.7± 5.2 19.3± 2.6 66.3± 1.6
SatlasPretrain (S2 SwinB SI RGB) 96.1± 0.1 89.2± 1.2 61.4± 3.3 23.7± 2.6 71.9± 1.4
SatlasPretrain (Aerial SwinB SI) 96.1± 0.1 89.2± 0.6 52.1± 2.3 14.9± 1.5 69.1± 0.7
GFM 95.7± 0.1 87.1± 0.9 57.4± 3.4 19.1± 3.0 69.7± 1.0

RESISC45: linear probing AUC-ACC
iBOT-ImageNet 91.7± 0.1 89.3± 0.2 74.3± 0.6 40.2± 0.9 75.4± 0.2
iBOT-MillionAID 94.6± 0.1 92.2± 0.2 66.5± 1.5 25.1± 1.3 73.8± 0.5
DINOv2 91.1± 0.7 87.2± 1.0 72.9± 1.4 40.3± 1.0 74.2± 0.9
SatlasPretrain (S2 SwinB SI RGB) 72.8± 0.1 58.0± 0.2 25.4± 0.4 15.0± 0.3 46.6± 0.1
SatlasPretrain (Aerial SwinB SI) 81.7± 0.1 65.7± 0.1 31.1± 0.3 15.1± 0.1 52.8± 0.1
GFM 91.1± 0.0 83.6± 0.1 64.9± 0.4 35.6± 0.6 70.8± 0.2

UC Merced: full fine-tuning AUC-ACC
iBOT-ImageNet 98.6± 0.7 98.2± 1.0 91.0± 2.7 61.3± 7.7 86.2± 1.9
iBOT-MillionAID 98.7± 0.8 97.9± 1.3 84.3± 4.3 46.0± 8.3 82.9± 1.0
DINOv2 98.1± 0.5 97.9± 0.3 98.1± 0.4 97.3± 0.3 91.8± 0.1
SatlasPretrain (S2 SwinB SI RGB) 98.7± 0.2 98.0± 0.3 87.3± 2.6 61.9± 5.9 85.5± 1.3
SatlasPretrain (Aerial SwinB SI) 99.1± 0.2 98.1± 0.3 86.1± 3.1 57.7± 3.9 84.9± 0.9
GFM 99.2± 0.2 98.3± 0.6 93.3± 1.6 69.9± 3.8 87.9± 0.9

UC Merced: linear probing AUC-ACC
iBOT-ImageNet 98.0± 0.3 97.9± 0.3 91.8± 0.7 61.4± 3.6 86.1± 0.5
iBOT-MillionAID 99.5± 0.1 99.2± 0.32 75.7± 2.9 31.3± 3.9 80.2± 0.7
DINOv2 97.4± 0.2 97.0± 0.1 96.8± 0.1 91.8± 0.4 90.3± 0.1
SatlasPretrain (S2 SwinB SI RGB) 85.7± 0.8 79.6± 0.4 55.6± 1.6 27.2± 0.5 65.1± 0.3
SatlasPretrain (Aerial SwinB SI) 95.0± 0.3 87.0± 0.4 67.0± 0.8 36.8± 0.3 73.5± 0.3
GFM 95.8± 0.1 93.9± 0.2 84.7± 0.4 47.7± 0.4 81.0± 0.1

observe that for both full fine-tuning and linear probing the model trained with augmentations has a
clear advantage over the one trained without augmentation.

Experiments with augmentations and the results of the default setup for RESISC45 and CDD
datasets show that the diversity of the dataset in terms of real resolutions (GSD) improves the gen-
eralization capabilities of the finetuned model, even if the backbone weights are frozen.
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Table 4: The impact of full fine-tuning on the loss of generalization capabilities. All models are
iBOTs pretrained on MillionAID.

LEVIR-CD: full fine-tuning 1:1 1:2 1:4 1:8 AUC-F1

iBOT-MillionAID 88.7± 0.1 86.5± 0.2 63.6± 3.3 7.5± 0.5 67.5± 0.7
iBOT-MillionAID-augm 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2

LEVIR-CD: frozen backbone
iBOT-MillionAID 81.5± 0.1 81.0± 0.4 69.3± 3.1 17.0± 7.9 65.9± 1.6
iBOT-MillionAID-augm 84.4± 0.0 84.4± 0.2 61.6± 7.8 3.4± 4.0 64.7± 2.0

RESISC45: full fine-tuning AUC-ACC

iBOT-MillionAID 94.6± 0.2 92.8± 0.3 70.4± 4.0 16.6± 4.0 73.7± 1.3
iBOT-MillionAID-augm 93.4± 0.2 84.3± 1.2 47.4± 5.6 18.7± 2.0 66.2± 1.8

RESISC45: linear probing
iBOT-MillionAID 91.0± 0.1 87.5± 0.1 60.8± 0.2 9.3± 0.2 68.1± 0.1
iBOT-MillionAID-augm 94.6± 0.1 92.2± 0.2 66.5± 1.5 25.1± 1.3 73.8± 0.5

UC Merced: full fine-tuning
iBOT-MillionAID 98.0± 0.3 97.2± 0.6 87.2± 1.9 38.7± 3.0 82.2± 0.7
iBOT-MillionAID-augm 98.7± 0.8 97.9± 1.3 84.3± 4.3 46.0± 8.3 82.9± 1.0

UC Merced: linear probing
iBOT-MillionAID 96.9± 0.0 97.1± 0.2 93.6± 0.2 34.0± 1.3 82.5± 0.2
iBOT-MillionAID-augm 99.5± 0.1 99.2± 0.32 75.7± 2.9 31.3± 3.9 80.2± 0.7

Table 5: Dependence of the performance of fine-tuned models on scale augmentation performed
during pretraining and fine-tuning. All models are iBOTs trained on MillionAID.

Augmentation Phase 1:1 1:2 1:4 1:8

LEVIR-CD AUC-F1

Pretraining / Fine-tuning 88.7± 0.1 86.5± 0.2 63.6± 3.3 7.5± 0.5 67.5± 0.7
Pretraining / Fine-tuning 90.6± 0.2 87.6± 0.9 50.4± 15.1 2.0± 1.0 65.2± 3.2
Pretraining / Fine-tuning 88.2± 0.1 88.4± 0.1 87.9± 0.1 86.1± 0.1 82.4± 0.1
Pretraining / Fine-tuning 89.9± 0.1 89.9± 0.1 89.4± 0.1 87.7± 0.1 83.9± 0.1

CDD AUC-F1

Pretraining / Fine-tuning 95.8± 0.0 95.3± 0.0 92.3± 0.1 80.1± 0.5 87.0± 0.1
Pretraining / Fine-tuning 97.4± 0.0 96.8± 0.0 91.4± 0.6 79.2± 0.9 87.7± 0.2

UC Merced AUC-ACC

Pretraining / Fine-tuning 98.0± 0.3 97.2± 0.6 87.2± 1.9 38.7± 3.0 82.2± 0.7
Pretraining / Fine-tuning 98.7± 0.8 97.9± 1.3 84.3± 4.3 46.0± 8.3 82.9± 1.0
Pretraining / Fine-tuning 98.2± 0.6 98.3± 0.6 98.0± 0.6 95.7± 1.2 91.8± 0.6
Pretraining / Fine-tuning 95.3± 1.8 94.7± 2.0 94.0± 2.4 91.8± 3.6 88.4± 2.1

In Figure 3 the left subfigure shows the iBOT loss (total training loss and its components) trained
on the MillionAID dataset. The right subfigure displays the iBOT loss (total training loss and its
components: train cls, train patch, and train overlap) for the model trained on the MillionAID dataset
with the additional mask decoder proposed by us.
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Figure 3: Overall loss and loss components of the iBOT trained on MillionAID dataset for 200
epochs with scale augmentation and without a mask decoder on the left and with mask decoder on
the right.
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