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ABSTRACT

We build on the patch-segmentation and channel-independence concepts intro-
duced by PatchTST (Nie et al., 2023), adapting them to remote-sensing pixel time
series for self-supervised representation learning. In our approach, each spectral
band/index (e.g., Red, NDWI) is treated as a univariate sequence, split into patch
tokens, then processed by a 600k-parameter transformer encoder. We randomly
mask a substantial fraction of the patch tokens and train the transformer model
to reconstruct the missing segments, capturing both short sub-seasonal dynamics
within each patch and multi-seasonal context across the entire time series. Empiri-
cal results show that the learned representations transfer effectively to downstream
tasks such as land-cover classification. We also discuss future directions, includ-
ing foundation-scale training and integration of additional sensor modalities.

1 INTRODUCTION

Self-supervised learning has sparked breakthroughs across various modalities, including remote
sensing (Szwarcman et al., 2025; Tseng et al., 2024; Lu et al., 2024; Huo et al., 2025). In this
work, we adapt patch-based masking techniques (Nie et al., 2023) to remote sensing pixel time
series, enabling the model to learn meaningful representations without labeled data. Our method-
ology leverages the temporal structure of remote sensing data, treating each spectral band as an
independent time series and using a Transformer-based architecture to capture both local and global
temporal patterns.

2 METHOD OVERVIEW

2.1 INPUT REPRESENTATION AND PATCH TOKENIZATION

We consider a pixel-level multivariate time series composed of M spectral bands or indices. Each
band m ∈ {1, . . . ,M} is treated as a univariate time series {x(m)

1 , x
(m)
2 , . . . , x

(m)
L }, where L de-

notes the temporal length (e.g., biweekly composites spanning multiple months). Bands include
both raw reflectance (e.g., Red, NIR) and derived indices (e.g., NDVI, NDWI).

Each univariate time series is divided into overlapping patches of fixed length P , with stride S ≤ P .
For instance, a 4-year series with L = 104 timesteps and P = 16, S = 8 produces approximately
12 patches per band (Zerveas et al., 2021; Zhou et al., 2021). Each patch is treated as a ”token” and
serves as the unit of input to the transformer. Tokenization is done independently for each band.
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2.2 MASKED MODELING OBJECTIVE

Inspired by masked language modeling in NLP, we randomly mask a fixed fraction (e.g., 40%) of the
patch tokens in each channel (Devlin et al., 2019). The model is trained to reconstruct the masked
patches using context from the surrounding (visible) patches. This patch-wise reconstruction enables
the model to capture both short-range dynamics within a patch and long-range seasonal or multi-year
structure across the full sequence.

2.3 TRANSFORMER ENCODER

The core of the model is a 600K-parameter Transformer encoder. It processes each band’s patch
sequence independently using shared weights across all channels. This encourages spectral channel
independence and prevents the mixing of noise distributions. The encoder outputs contextualized
patch embeddings of shape (X,N,D), where X is the number of pixels, N is the number of patches
per sequence, and D is the embedding dimension.

After encoding, we obtain a D-dimensional embedding for each patch. To derive a single represen-
tation for the entire time series of a pixel, we aggregate the patch embeddings using mean pooling
or a special CLS token. These pooled pixel embeddings are then used for downstream tasks such as
classification, clustering, or unsupervised change detection via distance metrics (e.g., L2, cosine).

3 EXPERIMENTS

3.1 DATASET AND PRE-TRAINING

We evaluated our approach on a large-scale dataset derived from Sentinel-2 biweekly composites
spanning five years (2020–2024). Specifically, we sampled 50,000 image “chips,” each covering a 1
km × 1 km area (corresponding to 100 × 100 pixels at Sentinel-2’s native 10 m resolution), randomly
distributed across diverse land cover types throughout the African continent. Each chip contributes a
multispectral, biweekly time series comprising approximately 130 temporal observations per pixel.
To preprocess the data, we merged multiple Sentinel-2 acquisitions within each biweekly window
and computed the median reflectance to mitigate cloud and noise artifacts. We retained 10 spectral
bands and indices [‘Green’, ‘Blue’, ‘Red’, ‘NIR’, ‘SWIR1’, ‘SWIR2’, ‘NDMI’, ‘NDWI’, ‘CI’,
‘NDVI’] to construct the final pixel level time series dataset.

Over the course of training, the loss steadily declined (from 0.1715 to 0.0232), while validation
loss stabilized around 0.0864–0.0211, indicating limited overfitting and good reconstruction.

Figure 1: Training and validation loss curves over the course of self-supervised pretraining.

3.2 EVALUATION AND DOWNSTREAM TASKS

We evaluated the learned representations on a downstream land cover classification task, as shown
in Figure 2. To provide supervision, we used the ESRI Land Use and Land Cover (LULC) dataset
as a source of “weak labels” across our study regions. Although these labels are not pixel-accurate
and may include some noise, their broad spatial coverage and accessibility make them suitable for
large-scale benchmarking. Using the pooled pixel embeddings produced by the model, we trained
a lightweight classifier and observed strong diagonal dominance in the resulting confusion matrix.
This indicates that the learned self-supervised representations are discriminative enough to separate
major land cover types, even in the absence of precise annotations.
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Figure 2: Confusion matrix for land-cover classification using pooled pixel embeddings and ESRI
LULC labels.

To further examine the structure and quality of the representations learned during the self-supervised
pretraining, we applied Principal Component Analysis (PCA) to the pooled pixel embeddings. The
resulting 2D projection, shown in Figure 3, reveals coherent clusters and smooth transitions in the
embedding space. These emergent patterns often correspond to the underlying spatial or temporal
structure in the data. The clear separability between clusters, despite the lack of supervision, sug-
gests that the model captures both intra-class variation and inter-class distinctions. These findings
support the effectiveness of the learned embeddings for downstream geospatial and environmental
monitoring tasks.

Figure 3: PCA projection of pixel embeddings, revealing structure and smooth clustering.

4 CONCLUSION

In this ongoing work, we present a patch-based masking approach for self-supervised learning on
remote-sensing pixel time series, showing that even a relatively compact 600K-parameter Trans-
former effectively learns both short-range and global temporal semantics in unlabeled remote sens-
ing data. Future work will focus on foundation-scale training, extending our scheme to larger regions
and additional sensor modalities (e.g., SAR, weather, etc.).
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