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ABSTRACT

This paper introduces a novel approach for real-time onboard terrain classifica-
tion from Sentinel-1 (S1) level-0 raw In-phase/Quadrature (IQ) data, leveraging
a Stacked Intelligent Metasurface (SIM) to perform inference directly in the ana-
log wave domain. Unlike conventional digital deep neural networks, the pro-
posed multi-layer Diffractive Deep Neural Network (D2NN) setup implements
automatic feature extraction as electromagnetic waves propagate through stacked
metasurface layers. This design not only reduces reliance on expensive down-
link bandwidth and high-power computing at terrestrial stations but also achieves
performance levels around 90% directly from the real raw IQ data, in terms of
accuracy, precision, recall, and F1 Score. Our method therefore helps bridge the
gap between next-generation remote sensing tasks and in-orbit processing needs,
paving the way for computationally efficient remote sensing applications.

1 INTRODUCTION

Space-borne remote sensing missions increasingly rely on Synthetic Aperture Radar (SAR) data to
support environmental and societal applications such as deforestation detection, flood monitoring,
and agricultural assessment (Haensch & Hellwich, 2010; Zhang et al., 2017; Ley et al., 2018; Tot-
trup et al., 2022). However, the continuous growth in data volume poses significant challenges in
terms of downlink bandwidth, energy consumption, and real-time processing. Traditional pipelines
typically transmit high-level products (e.g., SAR images) to terrestrial stations, incurring latency
and cost (Filipponi, 2019). To address these limitations, there is a pressing need for onboard classi-
fication solutions that operate at the source, greatly reducing the downlink bandwidth requirements
in sending data from satellite to terrestrial station, and enabling real-time, in-orbit decision-making.

Recent advances in deep learning have driven breakthroughs in land-cover classification, target de-
tection, and image reconstruction from SAR data (Liu et al., 2024a; Amieva et al., 2024). However,
these methods often rely on digital backends, which remain constrained by onboard computational
capabilities and energy budgets (Boser et al., 1991).

Multi-layer diffractive metasurface arrays have recently emerged as a powerful analog architecture,
implementing a layer-by-layer transformation on the propagating electromagnetic waves (Lin et al.,
2018; Mengu et al., 2019; Liu et al., 2022). These so-called Stacked Intelligent Metasurfaces (SIM)
exhibit enhanced feature extraction capabilities by providing multiple programmable phase and am-
plitude modifications. Prior research has demonstrated these multi-layer metasurface networks can
function as ultra-fast, energy-efficient inference engines (An et al., 2023; Huang et al., 2024; Liu
et al., 2024b), but their application to onboard terrain classification of Sentinel-1 (S1) level-0 raw
data has remained largely unexplored.

In this work, we propose a wave-based diffractive deep neural network (D2NN) framework that
processes S1 level-0 raw IQ data in orbit, reducing the need for extensive data transmission and
computing resources at terrestrial stations. Our main contributions are:

• Multi-Layer Metasurface Inference: We design a multi-layer SIM-based approach that
performs layer-by-layer feature extraction in the electromagnetic domain, achieving higher
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Figure 1: High-level system overview. Comparison of processing progress: Traditional DNN-based
learning from level-1 data vs. proposed D2NN-based learning from level-0 data.

representational capacity than single-layer systems. By leveraging analog wave propaga-
tion and straightforward data augmentation techniques, our method not only enhances the
efficiency but also reduces the computational load and bandwidth requirements.

• Enhancement through Data Augmentation: Our research indicates that omitting phase-
rotation data augmentation results in a substantial decrease in the F1 Score (from 90.60%
to 69.35%). This highlights the essential role of data augmentation strategies in mitigating
the inherent noise and Doppler effects in raw level-0 data.

• Real-World Terrain Classification: We validate our model on actual S1 level-0 raw IQ
data, achieving comprehensive performance levels around 90%, covering accuracy, preci-
sion, recall, and F1 Score, which facilitates near real-time terrain classification tasks.

2 METHODOLOGY

2.1 SYSTEM OVERVIEW

Figure 1 compares traditional and proposed terrain classification pipelines using SAR data. The
traditional pipeline in Figure 1 (a) requires transmitting substantial volumes of raw data for down-
stream DNN processing because the complex algorithms needed to convert level-0 IQ data into
level-1 Single Look Complex (SLC) images cannot be processed onboard, necessitating significant
data transmission between the satellite and the terrestrial station.

Conversely, the proposed method illustrated in Figure 1 (b) processes level-0 IQ data directly. The
input data is mapped onto the transmission coefficient pattern of the initial layer (0-th layer). Let√
Ptxt represeal, with Pt being the transmit power and xt the normalized electromagnetic signal

such that |xt|2 = 1. As the signal
√
Ptxt propagates through the initial layer, it carries the encoded

input data to the subsequent layers (SIM-D2NN), where feature extraction and onboard classification
are automatically performed. This setup requires only receiving merely the classification outcomes
with a small amount of data, thereby streamlining the overall data processing workflow.

2.2 THE ARCHITECTURE OF SIM-D2NN

Layer-by-Layer Diffractive Network. We construct an (L+ 1)-layer SIM, as shown in Figure 1
(b), with each layer consisting of M programmable meta-atoms. The 0-th layer Φ0

j elements are
reconfigured using a controller to align with the augmented input features of the j-th patch sj ,
enabling efficient manipulation of electromagnetic waves in the wave domain:

Φ0
j = diag

(
a0j,1e

jθ0
j,1 , a0j,2e

jθ0
j,2 , . . . , a0j,Mejθ

0
j,M

)
= diag (sj,1, sj,2, . . . , sj,M ) . (1)

where sj,m is the m-th element in the normalized input tensor after data augmentation. The sub-
sequent layers Φl, l ∈ {1, 2, . . . , L} apply learned phase shifts θlm to the incoming wave to enable
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deep feature extraction. The diffracted wave from the final layer propagates to a K-element antenna
array at the terrestrial station, where K corresponds to the number of terrain classification categories.

Wave Propagation Model. Let Wl ∈ CM×M denote the transmission matrix between the (l−1)-
th and l-th metasurface layers, and w0 ∈ CM×1 be the vector from the transmit antenna to the 0-th
layer. Based on Lin et al. (2018), the (m,m′)-th element wl

m,m′ is

wl
m,m′ =

dxdy cosχm,m′

dlm,m′

(
1

2πdlm,m′
− j

1

λ

)
ej

2πdl
m,m′
λ , (2)

where λ is the wavelength, dlm,m′ the distance between two meta-atoms considered, χm,m′ the
propagation angle, and dx × dy the meta-atom dimensions. Thus, the overall propagation matrix
Gj ∈ CM×M is then Gj = ΦLWLΦL−1 · · ·Φ1W1Φ0

j .

Inference from the Received Signal. The yj ∈ CK×1 received at the terrestrial station is yj =
HGj w

0
√
Ptxt + n, where n ∼ CN (0, σ2) is the i.i.d. Additive White Gaussian Noise (AWGN),

and H ∈ CK×M models the channel from the SIM to the terrestrial station. After receiving yj

from K antennas, the magnitude at antenna k indicates the likelihood that the j-th patch belongs to
category k. Classification is done by selecting the antenna with the highest signal magnitude, i.e.,
k̂j = argmaxk∈K

{
|yj,1|2, |yj,2|2, . . . , |yj,K |2

}
, where k̂j is the predicted category for patch j,

and K is the set of all categories.

3 EXPERIMENTS AND DISCUSSION

3.1 DATA GENERATION AND PREPARATION

To demonstrate the effectiveness of our proposed SIM-D2NN, we classify land or ocean on S1 level-
0 raw IQ data. By targeting this basic level of remote sensing data, we aim to highlight the practical
feasibility of SIM-D2NN for airborne classification in near real-time in actual satellite operations.

Data Description. We leverage S1 level-0 raw IQ data, partitioning the scene into 128×128 patches
with a stride of 32 (Filipponi, 2019). Unlike higher-level SAR products, level-0 IQ data preserve the
original phase and amplitude information but lack standard radiometric and geometric corrections.

Labeling Ground Truth. Level-0 data lack direct annotations, complicating ground truth creation.
We utilize an open-source S1 level-0 decoding algorithm to denoise and clarify the data (Hall, 2023),
and annotate land vs. ocean regions using the decoded imagery as references for the raw IQ patches.

Data Augmentation. To reduce speckle noise in SAR imagery, we apply phase rotation to the raw
data 1. Each patch is shifted by a predetermined angle and concatenated with the original data,
enhancing the robustness and quality of inputs for model training.

3.2 QUANTITATIVE EVALUATION

We compare the performance of the proposed SIM-D2NN to a digital DNN with the same architec-
ture. The SIM-D2NN has weights constrained to unit modulus for phase-only adjustments, whereas
the DNN allows for unconstrained weight values, which may enhance performance. Table 1 presents
Precision, Recall, F1 score, and Overall Accuracy for the real S1 level-0 dataset, with training de-
tails, SIM architecture, and visualization results detailed in the Appendix.

3.2.1 MAIN COMPARISONS

Table 1 compares the classification result of the SIM-D2NN to a fully digital DNN. Despite the
inherent constraints associated with phase-only modulation in metasurface-based systems, the SIM-
D2NN attains a performance level of approximately 90%, as measured by accuracy, precision, recall,
and F1 Score. Remarkably, this performance is within a narrow margin of 5–7% of the digital DNN.

1The input metasurface layer is divided into two halves, with one half configured based on the input data
and the other half based on a 90-degree rotated version of the same data. The modulation occurs naturally as
the carrier waves pass through the input layer.
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3.2.2 ABLATION STUDIES

Table 1 shows ablation experiments to highlight important system parameters:

Number of Metasurface Layers for Feature Extraction (L). Increasing L enhances performance,
with a precision score reaching 90.54% at L = 4, which surpasses the 87.63% achieved at L = 1.

Transmit Power (Pt). Reducing Pt from 20 dBm to 5 dBm degrades accuracy to around 80%, re-
flecting the wave-domain model’s dependence on a sufficient Signal-to-Noise Ratio (SNR) to over-
come speckle noise and channel variations.

Sampling Rate (S). Using 10% of the total patches for training achieves near-optimal performance,
showing that the SIM-D2NN can learn efficient representations with limited training data.

Phase Rotation and Data Augmentation. Omitting the phase-rotation augmentation leads to a
significant drop in F1 (69.35% vs. 90.60%). This result underscores the importance of data aug-
mentation in mitigating the random phase fluctuations inherent to SAR imagery.

Table 1: Comparison of different scenarios on the S1 level-0 raw IQ dataset.

Ablation Setting
S1 Level-0 Raw IQ Dataset

Precision (%) ↑ Recall (%) ↑ F1 Score (%) ↑ Overall Accuracy (%) ↑
SIM-D2NN (L = 1) 87.63 91.27 89.41 83.44
SIM-D2NN (L = 6) 87.21 92.87 89.95 88.15
SIM-D2NN (S = 5%) 87.84 91.49 89.62 85.75
SIM-D2NN (S = 20%) 91.56 93.98 92.76 89.31
SIM-D2NN (Pt = 5 dBm) 86.14 92.20 89.07 80.29
SIM-D2NN (No phase rotation) 62.09 78.54 69.35 54.97
SIM-D2NN (Baseline) 90.54 90.67 90.60 87.83

Digital DNN 94.78 97.14 95.95 92.91
Note: Our baseline SIM-D2NN uses L = 4 layers, Pt = 20 dBm, and S = 10%.

3.3 DISCUSSION

The SIM-D2NN classification effectively reduces data transmission overhead, enabling real-time
flood detection and deforestation alerts. Future work will extend beyond the current land/ocean
classifications to include a broader range of terrain types. However, the reliance on specialized
metasurface hardware, which is limited to linear operations, restricts the SIM-D2NN from executing
essential nonlinear functions that enhance DNN performance. Moreover, although our simulations
account for noise and phase modulus constraints, real-world communication links may introduce
more complex distortions, such as the imperfect channel state information.

4 CONCLUSION

We have developed a multi-layer, SIM-D2NN designed to process S1 raw IQ data for terrain clas-
sification. By harnessing the inherent properties of wave propagation through multiple metasurface
layers, this approach has demonstrated the ability to achieve as high a performance as around 90%.
This significant performance boost reduces dependence on digital processing backends and lowers
the costs associated with data transmission. These encouraging outcomes underscore the potential of
wave-domain analog computing to revolutionize remote sensing technologies, offering faster, more
efficient, and sustainable solutions for Earth observation.
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A APPENDIX

A.1 THE ARCHITECTURE OF SIM

Figure 2: The illustration of the SIM structure and corresponding parameters.

Figure 2 illustrates the high-level architecture and key parameters of the SIM. Each layer contains a
grid of meta-atoms Φl (for l ∈ {1, . . . , L}), whose phase shifts θ are learnable. By stacking multiple
layers in series, the SIM performs sequential waveform transformations. The interlayer spacing d
and the channel coefficient w are fixed system parameters that shape diffraction and phase accumu-
lation, while the learnable phase shifts θ effectively carry out the linear operations approximating
certain DNN computations in the wave domain. Specifically, the normalized feature is applied at
layer 0, so that when the signal

√
Ptxt passes through this layer, the feature is transmitted to subse-

quent layers for further extraction.

A.2 TRAINING AND DEPLOYMENT ALGORITHM FRAMEWORK

Algorithm 1 Training and Deployment of the SIM-D2NN

Require:
Sliding window patches J = {Sj}Jj=1;
Channel matrix H, Wl for l ̸= 0, and w0.

Ensure:
S1 level-0 terrain classification result.

1: Stage 1: Offline Training
2: Randomly sample 10% of patches from J .
3: for epoch = 1 to Ne do
4: sj ← Modulation(Sj) ;
5: Initialize Φ0

j ← diag(sj,1, sj,2, . . . , sj,M );
6: Compute yj according to (3) and update the learnable parameters θlm.
7: end for
8: return Optimal phase shifts θ̂lm,∀m ∈M, l ̸= 0, l ∈ L.
9: Stage 2: SIM-Based D2NN Deployment

10: for each patch j = 1 to J do
11: Repeat steps 4-6 for feature embedding;
12: Set the phase shift at each meta-atom using θ̂lm;
13: Compute yj according to (3);
14: Classify by k̂j = argmax

k∈C

{
|yj,1|2, |yj,2|2, . . . , |yj,C |2

}
;

15: end for
16: return S1 level-0 terrain classification result.

Algorithm 1 outlines the two-stage framework for training and deploying the SIM-aided communi-
cation system:
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• Stage 1 (Offline Training): A portion of the dataset (e.g., 10%) is sampled to learn the
optimal phase configurations that minimize classification loss. Each patch in the training
set is downsampled and normalized, and its corresponding phase configuration matrix is
initialized. The output signal is then computed, and the learnable phase parameters are
updated via backpropagation.

• Stage 2 (SIM-D2NN Deployment): For each incoming patch, the same steps of modu-
lation are performed, and the final learned phase shifts are applied to the meta-atoms at
SIM. The received signal is probed and the antenna with the highest-intensity is selected to
output the class.

A.3 SIMULATION PARAMETERS

The system operates at a carrier frequency of 12 GHz, corresponding to a wavelength of λ = 25 mm.
The thickness of the SIM, TSIM, is set to 0.05 m, with the spacing between adjacent metasurfaces
in an L-layer SIM defined as dL = TSIM/L. Each meta-atom has dimensions of dx = dy = λ/2.
For the wireless link, unlike terrestrial communication scenarios, where channels in urban areas are
typically modeled as Rayleigh fading, the space-to-ground channel is modeled using a Rician fading
model, which accounts for both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) components
with Rician factor of K = 20 dB (Paulraj et al., 2003), and model the path loss from the SIM to the
receiver as (Al-Hourani & Guvenc, 2020):

PL(d, f) = FSPL(d, f) + LA + LE, (3)

where f and d is the carrier frequency and the distance, respectively. LA represents attenuation due
to atmospheric absorption and LE characterizes path loss due to interactions with near-surface urban
structures. FSPL(d, f) is the free space path loss expressed as

FSPL(d, f) = 20 log(f) + 20 log(d)− 147.55. (4)

Additionally, Table 2 summarizes other key hyperparameters, such as metasurface size, number
of layers, optimizer, learning rate, batch size, and noise levels. All experiments adhere to these
parameters without any specialized configuration.

Table 2: Simulation and training hyperparameters

Parameter Value
Metasurface size (M ) 2048
Number of layers (L) 4
Receive antenna elements (K) 2
Transmit antenna elements 1
Optimizer AdamW
Initial learning rate 0.01
Batch size 64
Epochs 60
Noise power -104 dBm

A.4 THE VISUALIZATION RESULTS ON THE WHOLE DATASET

Figure 3 displays the classification outcomes for the entire S1 level-0 dataset. Each patch is cate-
gorized based on the predicted terrain class, offering a detailed panorama of how different types of
land covers—such as ocean or land—are represented. These visualizations facilitate the identifica-
tion of areas susceptible to misclassification, providing critical insights that can be used to optimize
the network architecture, hyperparameters, and data augmentation techniques.

The comparison with the ground truth label, as shown in Figure 3 (d), illustrates the effectiveness
of various methods, including phase rotation (data augmentation), SIM-D2NN, and digital DNN, in
identifying terrain features. The inclusion of phase rotation in data augmentation proves essential for
effectively learning from the IQ raw data, as demonstrated in Figure 3 (a). Through an analysis of
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(a) SIM-D2NN (No phase rotation) (b) SIM-D2NN (Baseline)

(c) Digital DNN (d) Ground Truth Label

Figure 3: Comparison of the visualization results under different methods.

Figure 3 (b) and Figure 3 (c), it becomes clear that the analog SIM-D2NN achieves results in terrain
classification comparable to those obtained using a digital DNN. Notably, SIM-D2NN manipulates
only the phases at each meta-atom, adhering to unit modulus constraints, whereas the digital DNN
operates without such limitations.
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