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ABSTRACT

We present a new dataset and algorithm for fast and efficient coastal distance cal-
culations from anywhere on Earth (AoE). Previous global coastal distance datasets
have been generated at relatively coarse resolution (e.g., 4 km), limiting their util-
ity in many real-world contexts. Publicly available satellite imagery combined
with computer vision enable much higher precision. We provide a global coast-
line dataset at 10 meter resolution, a 400-fold improvement in precision over ex-
isting data. To handle the computational challenge of querying at such an in-
creased scale, we introduce Lighthouse (Layered Iterative Geospatial Hierarchical
Terrain-Oriented Unified Search Engine). Our method is both extremely fast and
efficient making it well-suited for real-time inference in resource-constrained en-
vironments.

1 INTRODUCTION

Regularly updated and precise sea-land demarcations are essential for many applications such as
environmental monitoring, maritime intelligence, and infrastructure planning. For example, in envi-
ronmental monitoring, accurate shoreline data is crucial for tracking coastal erosion, habitat changes,
and the impacts of climate change. Across a wide variety of satellite imagery based computer vision
tasks, knowing that an object is on water (versus land) improves precision and recall. The distance
to the nearest coastal point can also be used as a feature in maritime GPS behavioral classifica-
tion models. For some applications, the value of this data scales proportionally with its resolution,
particularly for activities nearshore or inland (see figure: 1). Our contributions are twofold:

1. We release a ∼10 meter coastal dataset including inland bodies of water.

2. We provide a library that efficiently generates the nearest coastal point from (AoE).

There are several publicly available distance-to-coast datasets and tools (table 1). To our knowledge,
the only option that provides distances from all points on earth is a 4 km resolution (resampled to 1
km) dataset produced by NASA Ocean Color (2009).

Figure 1: Comparison of distance to coast mapping at progressively higher spatial resolution
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Table 1: Existing publicly available coastline datasets

Source Resolution (m) Coverage Additional Notes

Lighthouse ∼ 10 Everywhere resolution is approximate; see sec. 4
NASA 4000 High seas only also available at 1 km (interpolated)
ArcGIS/ESRI 200000 Land masses only land to major oceans only
Bing Maps unavailable High seas only see GitHub

We develop an improved global land-sea coastal dataset by selectively merging the European Space
Agency’s (ESA) WorldCover 2022 (Zanaga et al., 2022), a 10-meter resolution land-cover map
derived from Sentinel-2 satellite images, with crowdsourced coastline annotations from Open-
StreetMap. WorldCover exhibits high overall accuracy, but misses hundreds of islands in Micronesia
and omits Antarctica. OpenStreetMap exhibits lower spatial resolution globally but it covers all is-
lands and includes recent annotations for Antarctica. Thus, merging yields a high-accuracy global
map.

However, querying this dataset with the same methods used for 4-km resolution data is cost-
prohibitive in both compute and storage. We develop a highly optimized hierarchical search algo-
rithm to reduce these costs. Our approach requires only modest hardware, and processes distance-
to-shoreline queries in less than 10 ms.

2 WHAT WE DID

2.1 DATASET CONCATENATION

High resolution satellite imagery provides a means to generate high resolution coastlines, as the
boundary between land and sea is a straightforward application of segmentation via computer vision
(supervision on permanent water labels). A variety of global land cover maps have been created in
the last several years including ESA’s WorldCover (Zanaga et al., 2022), Google’s Dynamic World
(Brown et al., 2022), and ESRI, Impact Observatory, and Microsoft’s LULC map (Karra et al., 2021).
We selected ESA’s WorldCover V2 because it has been shown to exhibit the highest accuracy for per-
manent water bodies (Xu et al., 2024). However, ESA omitted several key areas including Antarctica
(unavailable at the time of their publication), along with hundreds of islands in Micronesia. We filled
in the blanks with Open Street Map’s crowdsourced annotations of land-sea labels (OpenStreetMap
contributors, 2024). We concatenated these two datasets to complete a map of the planet, resampled
both datasets into 1x1 degree tiles, and saved these files to disk or the purpose of parallelization and
caching (see algorithm: 2). Supplemental figure 6 shows the distribution of resulting resampled tiles
from both sources.

2.2 COASTAL POINT GENERATION

To extract the coastal points from the joint dataset, we binarized the labels (water vs. rest), ran Sobel
edge detection over the resulting binary mask, and then constructed balltrees for each tile using the
Haversine1 metric over the coastal points (see algorithm:2.2) 2. This process was identical for both
the Open Street Map tiles and ESA tiles (fig:3).

1Note that Vincenty’s formula (Vincenty, 1975) is more accurate than Haversine, especially over long dis-
tances, but it comes with much greater computational complexity.

2Throughout the codebase, we chose options that minimized latency at the expense of an increase in storage.
For example, we do not compress the balltrees at all. Doing so would significantly increase the latency for a
relatively modest reduction in required disk space. Small increases in latency can kill real-time applications.
Disk space is cheap compared to RAM and CPU. We chose h5 for the geotiffs because of the ability to query
the land cover class of a single pixel, i.e. without needing to load the entire file into memory.
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Figure 2: Spherical Voronoi tesselation of the planet based on coastal points.

Algorithm 1 Generate BallTrees of Land-Sea Edges
Data: Open Street Map’s land polygons and worldcover data
Result: BallTrees of land-sea edges for each 1x1 degree land tile, saved to disk
Divide the world into 1x1 degree tiles that contain land
for each land tile T do

Generate a binary land-sea map for T
Identify land-sea boundaries via sobel edge detection
Extract edge coordinates, edge coords
Build balltree on edge coords using the Haversine metric
Save balltree (without compression)

end

3 QUERYING THE DATA

The nice thing about low resolution data is that you can precompute the distance to every point, store
that data in memory, and then retrieve any point on earth in O(1). But that method doesn’t scale to
high resolution data. For example, at 10 meter resolution, one would need to store approximately
100 TB of data in RAM (float, float, int, int) which is impractical unless you really don’t care about
money at all and have a fairly large and idling computer. The solution is to yield the distances at
runtime, rather than caching them. To do so efficiently, for real-time applications, you need to search
a large space extremely quickly.

Recall that we have high resolution ball trees for every coastal tile (fig. 6), and those can be queried
very rapidly for the nearest coastal point. In addition to the nearest coastal point, one must also
lookup the location’s class label (land vs. water). Doing so rapidly requires storing the land cover
maps as h5 files and retrieving just a single point’s class, rather than reading the entire tile. With the
ball tress and h5 files, one can immediately return the desired distance and class for any point that
is contained within a tile (i.e. not on the high seas). If the point lies outside every tile, how do we
determine which tile contains the nearest coastal point? The answer is via a spherical Voronoi tesse-
lation, precomputed for the whole planet, which is also loaded in memory at runtime (Tyler Reddy;
Van Oosterom & Strackee, 1983; Caroli et al., 2010). We generated this Voronoi tesselation (see fig.
(2)) carefully because we could not include every point (temporal complexity scales quadratically)
and if any critical point is omitted (such as an island) then the resulting tesselation and resulting dis-
tances could be incorrect. Therefore, we down-sampled the coastal points subject to the constraints
that 1) every line segment in the original dataset had to be represented by at least one point in the
resulting (post-resampled) dataset and 2) that the distance between connected points never exceeded
a distance threshold.
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Figure 3: Visual depiction of the method. A, D: High resolution satellite imagery centered on Seattle
(A) and a chain of islands in Micronesia (D). B.E: Binary mask constructed from land (vs. sea) labels
from ESA and OSM respectively. C, F: result of applying Sobel edge detection to the binary mask.
Note faint borders in F.

Algorithm 2 Find Nearest Land Point and Land Cover Class
Initialize an empty tile cache
for each query point (lat, lon) do

if (lat, lon) is contained within one of the existing tile’s bounds then
Load BallTree T and H5 T Land Cover tile
Query and return distance and land cover class

if (lat, lon) is not in any tile’s bounds then
Find the tile T containing (lat, lon) using the Voronoi diagram
Load BallTree T and H5 T Land Cover tile
Query and return distance and land cover class

return Results

This method will generate distances on the fly on modest hardware at millisecond timescales. It is
not quite O(1) like a dictionary lookup, but the resulting times are good enough for streaming/real-
time inference without breaking the bank.

4 SOME CAVEATS

High resolution satellite imagery – the basis of both sets of annotations used here – can facilitate
high accuracy but it does not guarantee it. Hybridizing labels from crowd sourced maps (OSM)
alongside computer vision from satellite imagery (ESA) will naturally result in a mixture of errors
due to human mislabeling and model misclassifications. Consider the challenges of annotating sea-
land boundaries, and the complexity of cliffs, beaches, harbors, bays, wetlands, islands, etc.

What is the definition of the coastline anyways? Nearly 50 years ago, Mandlebrot invented a new
branch of mathematics, fractal geometry, in part to discuss the complexity of coastlines and the
fact that their lengths are effectively infinite (Mandelbrot, 1982). Even today, we hotly debate the
true length of a coastline. How far inland should the coastline extend? On top of the challenge of
defining it, the earth is changing rapidly. Coastlines change, people build things, sea levels are rising
and islands are disappearing, glaciers calve, Antarctica sea ice expands and contracts. The higher
the resolution, the greater the opportunity for error.
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The 10-meter resolution should be considered an estimate, not a definitive upper bound. The vast
majority of the base annotations come from ESA’s WorldCover V2, which is derived from Sentinel-2
satellite imagery with a 10-meter pixel resolution. However, there is no single spatial resolution for
the OSM labels, as they are generated from a variety of sources using a mix of crowd-sourced and
machine annotations. Given this variability, we estimated the inter-label segment distance between
neighboring annotations in Antarctica, an area known for limited data, yielding a median of 35
meters (see supplemental figure A). Inter-label segment distance is not a direct measurement of
spatial resolution, but it can serve as a useful proxy for estimating effective resolution.

The true resolution is a function of several factors including the base resolution of the satellite
imagery, the human and computer vision annotation accuracy, and the complexity of the shoreline
(which we do not know at scale). We refer the interested reader to Hormann (2013) and Topf (2013)
for more nuanced analyses of the quality of OSM’s coastal data and its effective resolution.

5 CONCLUSION

The coastline is complex, perhaps infinitely so (Mandelbrot, 1982). If even higher precision is de-
sired, this method should scale favorably up to the limit of commercially available satellite imagery
(15 cm as of early 2025). Not everyone needs high-resolution coastal data, but for those who do, we
have open sourced both our dataset and method under permissive licenses.

1. Dataset: gs://ai2-coastlines/v1/data; (GCP bucket, ODbL)
2. Code: https://github.com/allenai/lighthouse (Apache 2.0)
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A APPENDIX

Figure 4: Distribution of 1x1 degree tiles from each data source. Note islands in Micronesia, Hawaii,
South Atlantic, and Northern Greenland

Figure 5: Close up of missing tiles from Micronesia
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Figure 6: Empirical distribution of coastal segment distances (neighboring points) from Antarctica
Open Street Map annotations
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