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ABSTRACT

Multimodal large language models (MLLMs) have altered the landscape of com-
puter vision, obtaining impressive results across a wide range of tasks, especially
in zero-shot settings. Unfortunately, their strong performance does not always
transfer to out-of-distribution domains, such as earth observation (EO) imagery.
Prior work has demonstrated that MLLMs excel at some earth observation tasks,
such as image captioning and scene understanding, while failing at tasks that re-
quire more fine-grained spatial reasoning, such as object localization. However,
MLLMs are advancing rapidly and insights quickly become out-dated. In this
work, we analyze more recent MLLMs that have been explicitly trained to in-
clude fine-grained spatial reasoning capabilities, benchmarking them on EO ob-
ject localization tasks. We demonstrate that these models are performant in certain
settings, making them well suited for zero-shot or limited data scenarios. We then
directly compare their performance to a few-shot Faster RCNN, quantifying the
amount of data that is needed to surpass MLLM performance in various settings.
We hope that this work will prove valuable as others evaluate whether or not it is
worth employing an MLLM for a given EO task and that it will encourage further
research in utilizing these models in the overhead domain.

1 INTRODUCTION

A primary drawback of deep learning architectures is their reliance on large annotated datasets.
This can be especially challenging when training a model on an earth observation (EO) task, where
annotated data is costly to acquire and large, publicly available datasets are uncommon. Multi-
modal large language models (MLLMs) offer a potential solution to this problem, as they are strong,
general-purpose models that achieve impressive performance across a variety of tasks in zero-shot
settings (Dubey et al.| |2024; |Deitke et al.l 2024; [Team), 2025; Wang et al., [2024). However, this
performance does not always transfer to EO tasks due to the domain gap between overhead imagery
and the web images that are used for most MLLM training pipelines (Zhang & Wang| 2024; Hu
et al.} 2023). While some MLLMs have been fine-tuned specifically on EO data (Kuckreja et al.,
2024; Irvin et al.; 2024)), the generalizability of these models often suffers, making their performance
underwhelming on EO tasks that are out-of-distribution relative to the fine-tuning data.

Zhang & Wang| (2024)) sought to understand the extent to which the robust general knowledge of
MLLMs could be transferred to the EO domain. They found found that for high-level tasks, such
as image captioning or scene classification, MLLMs tended to perform reasonably well. However,
when tasks required more fine-grained spatial reasoning, such as object counting or localization,
MLLM:s did not perform well. This result aligns with work outside of the EO domain, where it has
been demonstrated that MLLMs struggle with these tasks on non-overhead imagery as well (Kaduri
et al.| [2024). This suggests that MLLMs are capable of leveraging their vast general knowledge and
applying it to EO images, but that it is the general deficiency of struggling with fine-grained visual
reasoning that produces results such as those observed in|Zhang & Wang|(2024).
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Figure 1: Sample outputs using various MLLMs (green dots=ground truth and red Xs=predictions)
across three tasks: building detection (left), animal detection (middle), and plane detection (right).

More recent MLLMs integrate explicit localization information directly into their training pipeline
(Deitke et all, 2024}, [Team| 2025}, Wang et all, 2024). These are relatively new capabilities that
allow models to output localization coordinates. We are the first work to benchmark these new
models on the EO domain, directly assessing whether prior results regarding the poor localization
capabilities of MLLM:s still hold. We evaluate the Molmo family of models 2024),
the new Qwen 2.5-VL architecture 2025), and the recent Llama 3.2 model family
2024), across three different object localization tasks: plane detection, building detection, and
animal detection (cropped examples of these tasks can be seen in Figure[T). We select Molmo and
Qwen 2.5-VL because both explicitly include localization capabilities in their training pipeline, and
we select Llama 3.2 as an experimental control because it was released contemporaneously with the
other architectures but does not advertise localization capabilities. We directly compare the MLLMs’
localization performance to a standard object detection architecture, Faster RCNN Ren et al.| (2015),
trained on various amounts of training data. While this is not a fully fair comparison due to the
MLLMs operating in a zero-shot setting, it allows us to precisely quantify how much data is
needed for a typical object detector to beat an MLLM on EO tasks, allowing future researchers
to make more informed decisions about utilizing these models. Along with these quantitative results,
we also provide a qualitative evaluation of each models results via visualizations and a detailed
discussion of various failure scenarios.

2 EXPERIMENTS

Datasets We evaluate the MLLMs on a variety of remote sensing object localization tasks. The
first dataset that we consider is the RarePlanes dataset/Shermeyer et al.|(2021). We make this dataset
a | class plane detection task, assessing each MLLM’s ability to detect high-level object categories.
The second dataset that we consider is the Aerial Animal Population (AAP) dataset|Eikelboom et al.|
(2019), which consists of a set of high resolution images taken from a helicopter with small animals
in the scene, belonging to one of three classes: elephant, giraffe, and zebra, assessesing each model’s
ability to detect and classify small objects. The last dataset that we consider is the xBD dataset|Gupta)
(2019) because its images are at a relatively high GSD, assessing the models ability to localize
information in large scenes, while again challenging them to detect small objects. A more detailed
description of these datasets, and our pre-processing, is available in the supplementary.

Metrics Molmo only outputs centerpoints Deitke et al.|(2024), therefore we evaluate the models
in a centerpoint regime. We implement a center mAP score, where object association is based upon
pixel distance. We set this pixel distance based upon the size of the target(s) in each dataset. To
evaluate Qwen 2.5-VL, which outputs bounding boxes, and Faster RCNN (2015), we
convert the bounding boxes to centerpoints by considering the center of the box as the prediction.

RarePlanes Results The second column of Table [I] contains the results for each MLLM on the
RarePlanes plane detection task. This is the easiest task out of the three due to the size and distinct
shape of the target objects. We find that Molmo 72B performs the best out of all of the MLLMs.
Note that both Llama models obtain a mAP of 0 due to the fact that all of its outputs are invalid. Even
after exploring a variety of prompting strategies, it was difficult to get the model to output anything
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Model RarePlanes mAP@30pix AAP mAP@30pix xBD mAP@15pix
Molmo 7B O 62.62 30.26 2.97
Molmo 72B 72.12 29.82 4.22
Qwen 2.5-VL7B  46.62 30.01 0.49
Qwen 2.5-VL 72B  50.03 12.09 0.50
Llama 3.2 11B 0.00 0.00 0.00
Llama 3.2 90B 0.00 0.00 0.00

Table 1: Object detection results for various MLLMs across three different datasets.
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Figure 2: Few-shot Faster RCNN (Ren et al., [2015) performance with varying amounts of training
images (blue lines) vs. top-performing MLLM’s performance (alt-color lines) for each task.

reasonable, with it sometimes even generating bounding boxes outside the boundaries of the image.
This suggests that Llama was never exposed to this type of data during training and, despite getting
strong performance across many MLLM benchmarks, cannot easily generalize to localization tasks.
Qwen 2.5-VL is the newest of the models that we evaluated and it performs the best for its size,
beating Molmo 7B by close to 10 AP. However, even Qwen 72B falls short of Molmo 72B. The
substantial jump in performance from Molmo 7B to 72B, compared to the relatively small perfor-
mance jump from Qwen 7B to 72B, suggests that the performance of one model size within a model
family is not indicative of the performance of another model size. Therefore, it is worth exploring
all available sizes for a given family before drawing any conclusions about their capabilities.

Next, we compare the most performant MLLM, Molmo 72B, to a Faster RCNN, trained on randomly
sampled subsets of data. Figure[2](left) illustrates the performance observed as more data is added to
the Faster RCNN’s training dataset, while the horizontal line represents the performance of Molmo
72B. We can see that the performance of the Faster RCNN intersects with Molmo between 8 and
16 examples, indicating that this is the number of images needed to beat the zero-shot performance
of Molmo on this task. This suggests that when a task is relatively simplistic and even just a few
labeled examples are available, it may not be worth leveraging an MLLM. However, the performance
that Molmo achieves on this task is impressive for a zero-shot model and, in data scarce settings,
it is certainly still worth considering. Various visualizations are available in the supplementary,
illustrating impressive successes as well as failures, including producing false positives on shadows,
missing a plane when it is close to another, and missing planes that are partially obscured.

Aerial Animal Population Results The third column of Table 1| contains the results for the AAP
animal detection task. This task is more challenging than RarePlanes due to the objects of interest
being smaller and it being a multiclass problem. Due to this difficulty, each of the models perform
worse relative to RarePlanes. LLama once again is incapable of localizing any of the objects in the
scene. Surprisingly, Molmo 7B O outperforms all other models on this task, including Molmo 72B.
This again suggests that rather than the size of the model predicting performance, there is likely a
complex interaction between the original training data and the number of parameters in the model
that determines its performance for a given task. For most models, ‘elephant’ has the highest AP,
likely due to its size and the fact that it is less likely to be confused with the other targets.

Figure [2] (middle) contains results for Faster RCNN on this task. Like the MLLMs, Faster RCNN
struggles with the task compared to RarePlanes. Notably, its performance does not intersect Molmo
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7B until just over 32 examples are included during training. While acquiring 32 labeled images
may be trivial for some tasks, this task is a great illustration of a scenario in which this might
be challenging. Namely, the targets are relatively small, making them easy to miss for a human
annotator, and, when tiled, there are a large number of images without targets in them. While some
scenarios may require a high level of accuracy, thus necessitating this labeling, other scenarios may
not require it, and in those scenarios, MLLMs are attractive. Even when high accuracy is desired,
the MLLM could still be leveraged as an initial model for filtering empty scenes, then the labels
could be refined and fed into a traditional detector. Figures illustrating the performance of Qwen on
this dataset, along with detailed descriptions of various success and failure cases, are available in the
supplementary. In many images, Qwen performs quite well, correctly identifying all or most of the
animals. However, there are catastrophic failure scenarios. For instance, in some cases, Qwen only
places a single box on a group of animals, substantially hurting average precision.

xBD Results The fourth column of Table [T[] contains the results of each MLLM on the xBD build-
ing detection task. None of the models perform particularly well at the task. The Molmo family of
models is the only one that outputs some valid predictions. Examples are included in the supplemen-
tary illustrating the challenging nature of this task. When buildings are sufficiently large, the model
is able to accurately detect them. However, there are many small buildings in the image that are
difficult to discern without zooming into the image, making this a challenge for all models, and even
humans without zooming in and carefully scanning each image. The Faster RCNN performance is
visible in Figure 2] (right). Even a trained detector does not perform well when up to 128 examples
are included in the training set; this is another testament to the task’s difficulty.

Failure Scenarios and Limitations While each of the MLLLMs perform differently across each of
the tasks, they share some common failure scenarios (outside of Llama 3.2 which fails to generate
valid coordinates for almost every example). Across all tasks, models tend to produce more false
negatives than false positives. Objects are more likely to be missed if they are very small, obscured,
or close to other objects. One explanation for some of these failure cases is the fact that none of
the models place points with extreme precision, likely leading the model to think that it placed a
point on an object when in fact it was meant for the adjacent one. Another reason that might explain
this propensity towards false negatives is that unlike traditional detection architectures, there is no
notion of an object score; the model itself is deciding which regions in the scene most strongly
correspond to the desired target category. Perhaps if a score was available, or we were able to
lower the model’s threshold for determining whether something was an object, some of these false
negatives would be avoided. In some cases, false negatives result from too many objects being
contained in the image. We notice that all of the models can only scale to a certain number of
objects, likely due to the distribution of object counts in the training data. Beyond this number, the
model stops generating predictions, even with sufficient output tokens. Generally, false positives
tend to align with reasonable distractors. For instance, a large boulder or tree that looks like an
elephant may be mistaken for one, or one target is missed within a tightly packed group of targets.
However, there is an exception to this observation where the model will generate a long string of
false positives (see Figure 1 in the supplementary), resulting in severe failure. We hope that future
work may investigate these hallucinations further, better understanding and mitigating them.

3 CONCLUSION

In this work, we analyzed a suite of recent MLLMs across a variety of EO object localization tasks.
We found that in certain scenarios, where objects are relatively distinct and are of sufficient size,
that these models are capable of obtaining strong results. We then compared their performance to
a standard object detector, precisely quantifying the amount of training data needed to match their
performance, providing a starting point for others to determine whether these models might be useful
to their use cases. Explicit object localization capabilities are relatively new to MLLMs, offering
exciting possibilities as they are further developed. As MLLMSs are applied to new tasks, such as
computer control (OpenAll 2024} [Anthropicl [2024), fine-grained spatial reasoning capabilities will
become more important to the companies that train these models. We believe that there will be an
increased interest in localization moving forward and that the EO community will be able to benefit
as new models are released. We hope that this work will get others interested in these models and
encourage further work focused on leveraging and understanding them.
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A EXPERIMENTAL DETAILS

MLLM Details We used the HuggingFace implementations for each of the LLMs that we consid-
ered (Wolf et al.l [2020) and opted to use the instruct variants of each model. For Molmo, we used
the standard release of Molmo 7B O)and a 4-bit quantized version of Molmo 72B\ For Qwen 2.5-VL
7B, we used the jpublic code release and we used the 4-bit quantized version of Qwen 2.5-VL 72B.
For Llama 3.2 11B, we used the release| by Meta and we used a 4-bit quantized version of Llama
3.2 90B, All MLLMs were run on a single Nvidia H100 GPU. We set the max new tokens able to
be generated to 800 tokens. We used the default settings for Llama 3.2 and Qwen 2.5-VL and for
Molmo we specified a greedy sampling strategy for token generation. The prompts that we used for
each model are available in Table 2l

Model Dataset Prompt

Molmo7BO RP “Where are the {category}?”

Molmo 7B O AAP “Point to {category}. Please say ‘This isn’t in the image.” if
it is not in the image.”

Molmo 7B O xBD “Place a point on each {category} in the image.”

Molmo 72B RP “Place a point on each {category} in the image.”

Molmo 72B AAP “Look for {category} in the image and show me where they
are.”

Molmo 72B xBD “Place a point on each {category} in the image.”

Qwen 2.5-VL  All “Detect all {category} in the image.”

Llama 3.2 All “Detect all {category} in the image. Output the coordinates

in the form: [x1, x2, y1, y2].”

Table 2: The prompts that we used for each model to extract localization information across each
task. We initially tried to match the prompts that were provided in the original papers and, in some
cases, did our own additional tuning. {category} is the class of the target we are locating.

Few-shot Details To construct few-shot splits for each of our datasets, we randomly sampled K
images from the dataset, where K is the number of shots that we are considering. We created 10
seeds for each K-shot split, each consisting of different images and a varying number of annotations.
For RarePlanes, we trained our Faster RCNN using Detectron2 (Wu et al., 2019) for RarePlanes.
The Faster RCNN has a ResNet-50 (He et al., 2016) backbone and we used the ResNet 50 weights
provided by Detectron? to initialize our model. We used the standard configuration provided by
Detectron2, modifying the images per batch to 2, the base learning rate to 0.0025, and the ROI head
batch size to 64. We trained each model on an Nvidia A100 GPU for 1000 iterations, as we find this
sufficient for convergence. For AAP and xBD, we used MMDetection (Chen et al.| (2019) to train
the Faster RCNNs. We used the standard COCO configuration for MMDetection and the available
ResNet 50 pre-trained weights to initialize the model.

Data Details For both the Aerial Animal Population dataset and xBd, we use the pre-processed
data from Zhang & Wang| (2024). xBD is a satellite image dataset originally constructed for change
detection. We convert it into an object detection dataset by only considering the first image in each
example and asking the models to identify the buildings in the image. The RarePlanes (Shermeyer
et al.| |2021) scenes were tiled into 1333x800 tiles with a 200 pixel overlap. We also tile the test
portion of the Aerial Animal Population dataset (Eikelboom et al., [2019) into 900x700 tiles with
200 overlap, based upon the original paper Eikelboom et al.|(2019). Note that the training data was
already tiled into roughly this size. For both of these datasets, the metrics that we present evaluates
on individual tiles, rather than reporting results at the scene level.

B ADDITIONAL FIGURES
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Figure 3: Image from xBD dataset with Molmo 72B labels (ground truth represented by green dots
and predictions represented by red Xs). This illustrates the common failure scenario that is discussed
in the main text, where models will sometimes generate a sequence of many detections in a line. We
are uncertain what results in this behavior but we notice it more with small models.
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Figure 4: Illustration of an example from RarePlanes using Molmo 72B (ground truth represented
by green dots and predictions represented by red Xs). Here, the model successfully detects most
aircraft in the scene, despite the terminal providing many distractors. It even detects one of the two
aircraft that appear at the edge of the image, suggesting that it is able to detect parts of planes.

Figure 5: Illustration of an example from RarePlanes using Molmo 72B (ground truth represented by
green dots and predictions represented by red Xs). Here, the model successfully detects all aircraft
in the image, despite variations in size and orientation.
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Figure 6: Illustration of an example from RarePlanes using Molmo 72B (ground truth represented
by green dots and predictions represented by red Xs). The model successfully predicts most planes
in the image, despite the large number of targets and potential distractors. It misses a plane that is in
close quarters to other planes and it misses two planes that are partially obscured.

Figure 7: Illustration of a failure case on RarePlanes using Molmo 72B (ground truth represented by
green dots and predictions represented by red Xs). An example of a failure where the model detects
the plane’s shadow as an additional plane. We noticed models making this mistake in other datasets
as well.

10
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Figure 8: Zoomed in illustration of a success case on the Animal Population dataset using Qwen
2.5-VL 7B (ground truth represented by green dots and predictions represented by red Xs). Note
how difficult it is to distinguish the giraffes from the background, nevertheless, Qwen successfully
locates each one.

Figure 9: Zoomed in illustration of a success case on the Animal Population dataset using Qwen
2.5-VL 7B (ground truth represented by green dots and predictions represented by red Xs). Qwen
successfully locates the elephants in the image. While they initially appear distinct, Figure [T0]con-
tains the zoomed out version of the image, where the elephants are no longer clear and are actually
quite small relative to the scene.
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Figure 10: Full image from the Animal Population dataset with Qwen 2.5-VL 7B labels (ground
truth represented by green dots and predictions represented by red Xs).

12
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Figure 11: Zoomed in image from the Animal Population dataset with Qwen 2.5-VL 7B labels
(ground truth represented by green dots and predictions represented by red Xs). This illustrates a
common failure case where Qwen places a point on a group of animals, rather than individually
identifying each one. This substantially hurts the AP of the model.

13
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Figure 12: Zoomed in image from the Animal Population dataset with Qwen 2.5-VL 7B labels
(ground truth represented by green dots and predictions represented by red Xs). This is a less severe
failure case, more aligned with the types of mistakes one might expect to see, where one individual
in a group of animals is missed.

14
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Figure 13: Image from xBD dataset with Molmo 72B labels (ground truth represented by green
dots and predictions represented by red Xs). This is an example of a scenario where the model
was relatively successful. It definitely possesses the required knowledge to detect buildings from
an overhead angle. However, it misses certain buildings, especially when they are quite small, with
some of them being fully subsumed by the small dots that we placed on the image.
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Figure 14: Image from xBD dataset with Molmo 72B labels (ground truth represented by green dots
and predictions represented by red Xs). Another scene in which Molmo was relatively successful.
In this case, it again detected many of the homes, which are already relatively small, mostly missing
smaller buildings which appear to be sheds or garages.
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Figure 15: Image from xBD dataset with Molmo 72B labels (ground truth represented by green dots
and predictions represented by red Xs). An exmaple of a failure scenario, where there are too many
houses in the image for molmo to detect. It is worth noting that it does get many of the buildings.
However, we found that even with expanding the generated token limit, Molmo falls apart past a
certain number of objects in a given image, likely due to the distribution of object counts that it was
trained on.
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Figure 16: Image from xBD dataset with Molmo 72B labels (ground truth represented by green dots
and predictions represented by red Xs). Another example of a failure scenario, where in this case
the model incorrectly segments a larger building into multiple smaller buildings.
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