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ABSTRACT

Geographic distribution shift arises when the distribution of locations on Earth in
a training dataset is different from what is seen at test time. The most common
approaches to tackling geographic distribution shift treat regions delimited by ad-
ministrative boundaries such as countries or continents as separate domains and
apply standard domain adaptation methods, ignoring geographic coordinates that
are often available as metadata. This paper proposes the use of location encoders
for training models that are more robust to geographic distribution shift. We show
how both simple sine-cosine encoders and pre-trained location encoders can be
used to improve standard domain adaptation methods for the special case of ge-
ographic distribution shift. Our proposed methods achieve state-of-the-art results
on geo-tagged imagery datasets from the WILDS benchmark.

1 INTRODUCTION

Empirical risk minimization (ERM) assumes a set of independent and identically distributed (i.i.d)
training examples. The learned predictor is then expected to generalize well to unseen data at infer-
ence time with the assumption that this data is drawn independently from the same distribution. In
many real-world applications, these assumptions do not hold (Dundar et al., 2007).

In this paper, we focus on a particular way of violating these assumptions known as subpopulation
shift (Koh et al., 2021). In this setting, 1) the training data is not i.i.d but rather drawn from many
different distributions (domains), and 2) the inference data is drawn from a different mixture of
the same domains. Subpopulation shift arises naturally in many remote sensing applications (Ekim
et al., 2024), where training and inference data may be drawn from different mixtures of geographic
regions. We refer to this setting as geographic distribution shift.

A common approach to learning a predictor that is robust to geographic distribution shift is to treat
different regions delimited by administrative boundaries such as countries or continents as different
domains and apply standard domain adaptation methods (Koh et al., 2021). However, this approach
may ignore intra-regional diversity and inter-regional similarities. Moreover, geographic coordinates
that are often available as metadata are discarded.

The central idea of this paper is to use location encoders to model an underlying, continuous domain-
assigning function in place of discrete region labels. Location encoders are parametric functions that
map geographic coordinates into a learning-friendly higher-dimensional latent space (Mai et al.,
2023b). With the rise of geo-tagged image datasets (Tang et al., 2015), location encoders have be-
come a widely applicable tool and can be used to encode a rich domain-specific signal. In particular,
geographic coordinates have proven to be a useful input for a variety of prediction tasks, including
geo-localization (Vivanco et al., 2023), image classification (Aodha et al., 2019), regression (Klem-
mer et al., 2023), and super-resolution (Panangian & Bittner, 2025).

In this paper, we show how location encoders can be naturally integrated into various domain adap-
tation methods for improved robustness to geographic distribution shift. We conduct experiments
using two remote sensing datasets from the WILDS benchmark: FMoW (Christie et al., 2018) and
PovertyMap (Yeh et al., 2020). Empirically, we demonstrate that our proposed methods lead to
significant improvements on worst-group performance metrics under geographic distribution shift.
Notably, we achieve a new state-of-the-art result on the WILDS leaderboard for FMoW.
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2 BACKGROUND

2.1 SUBPOPULATION SHIFT

What can go wrong when learning a predictor f : X → Y using ERM in the midst of a subpopula-
tion shift? Intuitively, different domains may have different sets of features that are predictive of the
target y, and the learned predictor must rely on the correct set of features for each domain without
becoming dependent on spurious correlations. Standard ERM can fail in this setting by either un-
derfitting to predictive features from under-represented domains in the training data or by overfitting
to spurious features from over-represented domains. In both cases, the result is a predictor that per-
forms significantly better on some domains than others at inference time. This bias is problematic
when the mixture of domains at inference time is significantly different from what is seen during
training or when the bias can have unfair or harmful consequences when deployed (Sagawa et al.,
2020).

Many approaches to learning a predictor that is robust to subpopulation shift fall into one of three
categories. 1) The first seeks to strengthen the reliance of the predictor on domain-specific predictive
features by using domain labels to condition the hypothesis space. Examples include feature-wise
modulation (Lee et al., 2021) and mixture of experts models (Yao et al., 2024). 2) The second seeks
to reduce the reliance of the predictor on spurious correlations by learning features that satisfy some
invariance condition across domains (Sun & Saenko, 2016) (Arjovsky et al., 2020) (Ganin et al.,
2016). Note that some recent approaches are more targeted and can be considered part of both
categories (Yao et al., 2022) (Gao et al., 2023). 3) The third category consists of distributionally
robust optimization approaches that aim to minimize risk according to an estimated worst-case data
distribution (Sagawa et al., 2020). In this work, we focus on a subset of approaches from the first
two categories, which we describe below.

2.2 CONDITIONAL MODELING METHODS

Domain conditional predictors (Lee et al., 2021) The key idea behind domain conditional pre-
dictors (DCP) is to learn a latent representation of each domain and to condition the prediction of y
on these domain representations using FiLM (Perez et al., 2018). The latent domain representations
are obtained from an intermediate layer in a neural network that is trained to predict the domain
label directly from the input x. This network is trained jointly with the predictor f . Please refer to
Appendix A for the exact structure of the DCP loss function.

D3G (Yao et al., 2024) Given domain labels at training time, D3G trains separate prediction heads
for each domain in the training data, and jointly trains another model to predict pairwise similarities
between domains (called domain relations) from metadata. At inference time, the predictions output
from various heads are weighted by their relation to the input domain. The domain relation predictor
is of the form:

1

R

R∑
r=1

SC ( wr · g(mi), wr · g(mhead j) )

where SC denotes cosine similarity, mi, mhead j is metadata representing domain i and the domain
of the head j respectively, wr is a set of learnable vectors, and g is a neural network. When applied
to geographic distribution shift, D3G uses continent-level labels as the domain metadata input to g.

2.3 INVARIANCE-BASED METHODS

Invariance-based domain adaptation methods seek to learn features that satisfy some invariance
condition across domains during training. In this work, we focus on two methods that enforce
invariance via a regularization term in the training loss:

IRM (Arjovsky et al., 2020) The IRM regularizer encourages features such that a simple classifier
common across domains on top of those features may be optimal for all domains in the training data.

CORAL (Sun & Saenko, 2016) The CORAL regularizer encourages domain-pairwise differences
between feature means and covariances to be small.
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Figure 1: Illustration of our proposed approaches, DCP + WRAP (left) and D3G + WRAP (right).
The domain predictor in dashed red outline is discarded at inference time.

3 METHODS

In this section, we explain how we propose to use location encoders to improve the standard domain
adaptation methods described in the previous section for the case of geographic distribution shift.

3.1 LOCATION-AWARE CONDITIONAL MODELING

DCP + WRAP We hypothesize that in the case of geographic distribution shift, geographic coor-
dinates are better predictors of domain than inputs x. We therefore propose to substitute the domain
predictor in the original DCP method with 2 linear layers trained on top of a simple sine-cosine
encoder which we refer to as WRAP, following Aodha et al. (2019) and Mai et al. (2023b):

WRAP(ϕ, θ) = [ sin(ϕ) cos(ϕ) sin(θ) cos(θ) ]

where (ϕ, θ) is the longitude and latitude. We illustrate this approach in Figure 1. It can be in-
terpreted as a way to condition the predictor f on a location embedding that is encouraged to be
predictive of the corresponding domain label. Note that any standard location encoder can be used
in place of WRAP, but to demonstrate the effectiveness of our approach, we chose a simple encoder
for the scope of this work.

D3G + WRAP We hypothesize that in the case of geographic distribution shift, geographic coor-
dinates are better predictors of domain relation than discrete region labels. We therefore propose
to modify the original D3G method to use geographic coordinates for the metadata mi input to the
domain relation predictor, and to use a linear layer trained on top of WRAP features to encode the
input domain in place of g (while mhead j and its encoding are unchanged). This can be interpreted as
a way of predicting domain relations from location embeddings that have been encouraged to align
more closely to the corresponding domain label.

3.2 LOCATION-AWARE INVARIANCE-BASED METHODS

IRM/CORAL + SatCLIP We hypothesize that pre-trained location embeddings that capture the
visual characteristics of given locations across the globe can model domain assignments that are
more suitable for imposing invariance conditions than administrative boundaries. We propose to
use SatCLIP location embeddings (Klemmer et al., 2023) for clustering locations, and to treat each
cluster as a separate domain. Specifically, we perform k-means clustering on normalized SatCLIP
embeddings for all locations in the training data, where k is a hyperparameter. For validation and
inference, we use nearest-neighbor cluster assignment, i.e. we do not include validation and test sets
when clustering. Note that other pre-trained location encoders such as GeoCLIP (Vivanco et al.,
2023) or CSP (Mai et al., 2023a) may be used in place of SatCLIP. A comparison of how different
location encoders perform in conjunction with our proposed methods is left for future work.

4 EXPERIMENTS

Datasets We conduct experiments on two datasets from the WILDS benchmark: 1) FMoW
(Christie et al., 2018) is a land-use classification dataset from satellite imagery covering over 200
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Table 1: Our experiment results on the official WILDS OOD test splits. Following the WILDS
guidelines, these results are averaged across 3 random seeds for FMoW and across the 5 official
data folds for PovertyMap. Standard error is reported in parentheses.

FMoW PovertyMap

Avg. Acc. (↑) Worst Acc. (↑) Avg. r (↑) Worst r (↑)

ERM 67.1 (0.07) 47.6 (0.86) 0.78 (0.02) 0.45 (0.02)
D3G 65.8 (0.24) 50.4 (0.92) 0.76 (0.03) 0.37 (0.04)
IRM 64.7 (0.12) 48.4 (1.34) 0.77 (0.02) 0.41 (0.04)
CORAL 65.3 (0.25) 49.4 (0.73) 0.76 (0.03) 0.39 (0.05)

ERM + WRAP 66.7 (0.34) 47.5 (0.55) 0.77 (0.02) 0.44 (0.03)
DCP + WRAP 66.9 (0.21) 51.8 (0.86) 0.78 (0.02) 0.51 (0.04)
D3G + WRAP 66.1 (0.26) 53.8 (0.22) 0.76 (0.02) 0.43 (0.03)

IRM + SatCLIP 65.2 (0.58) 50.6 (0.76) 0.76 (0.03) 0.41 (0.04)
CORAL + SatCLIP 66.2 (0.33) 50.1 (0.98) 0.78 (0.02) 0.44 (0.05)

countries. Each continent is treated as a different domain. 2) PovertyMap (Yeh et al., 2020) is a
dataset of multi-spectral Sentinel-2 imagery for asset wealth prediction (a regression task). The data
is grouped into two domains corresponding to whether the image was taken in an urban or rural area.

Architecture For both datasets, the base model we train is an image encoder with a linear predic-
tion head. For FMoW we finetune CLIP ViT-L/14 (Radford et al., 2021) as the image encoder and
for PovertyMap we use a randomly-initialized multi-spectral ResNet-18 as in Koh et al. (2021). A
detailed report of hyperparameters can be found in Appendix A.

Baselines In addition to the standard domain adaptation baselines (D3G, IRM, and CORAL), we
experiment with two baseline methods: standard ERM, and concatenating WRAP-encoded location
with the output from the image encoder before the linear prediction head (ERM + WRAP).

Results In Table 1 we report performance on the WILDS OOD test set averaged across all samples
and across all samples from the worst-performing domain. Validation set results can be found in Ap-
pendix A. With the exception of IRM on PovertyMap, our proposed location-aware variants for all
domain adaptation methods outperform their vanilla counterparts on worst-group performance. In
particular, D3G + WRAP tops the official WILDS leaderboard for FMoW. Moreover, DCP + WRAP
achieves state-of-the-art performance on both datasets and is the only domain adaptation method
to outperform standard ERM on PovertyMap. Interestingly, location-aware conditional modeling
methods tend to significantly outperform the ERM + WRAP baseline, suggesting that location en-
coders yield the greatest improvement in worst-group performance when used in conjunction with
standard domain adaptation methods.

5 CONCLUSION

It is written in Dundar et al. (2007) that though sample correlations are ubiquitous in real-world
datasets, “we do not appreciate the benefits of modeling these correlations, and the ease with which
this can be accomplished algorithmically.” In this paper, we show how location encoders can be
leveraged as a simple and effective tool for modeling correlations between the visual characteristics
of different regions on Earth. We demonstrate that using them in conjunction with standard domain
adaptation methods can greatly improve robustness to geographic distribution shift on benchmark
datasets. Future work may involve investigating our proposed methods for other tasks beyond re-
gression and classification, extending them to other settings such as unsupervised domain adaptation
(Sagawa et al., 2022), or comparing different location features and pre-training strategies.
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A APPENDIX

A.1 HYPERPARAMETERS

In this section, we describe the training hyperparameters that are specific to each dataset (FMoW
and PovertyMap) and specific to each domain adaptation method (DCP, D3G, IRM, and CORAL).

FMoW Each model is trained for 5 epochs on a single GPU with early stopping on validation loss.
We train with batch size 16 and use the Adam optimizer with initial learning rate 10−4 that decays by
a factor of 0.96 each epoch. The CLIP ViT-L/14 backbone is finetuned with the same optimizer and
learning rate schedule but with an initial learning rate of 10−5. We also use gradient accumulation
to achieve an effective batch size of 64. Finally, we normalize all images using ImageNet mean and
standard deviation, and apply random horizontal flip.

PovertyMap As in Koh et al. (2021), each model is trained for 200 epochs on a single GPU with
early stopping on validation r. We train with batch size 64 and use the Adam optimizer with initial
learning rate 10−3 that decays by a factor of 0.96 each epoch. As in Koh et al. (2021), we apply
random horizontal and vertical flip and color jitter to each image.

DCP The linear layer used for domain prediction is also trained with Adam and step decay learning
rate schedule (decayed by a factor of 0.96 per epoch) but with initial learning rate 0.1 times the initial
learning rate of the prediction head (i.e. 0.1 × 10−4 for FMoW and 0.1 × 10−3 for PovertyMap).
The DCP loss function includes two terms: the task prediction (TP) loss, and the domain prediction
(DP) loss. It is of the form:

LTP + λLDP

where L is classification loss (cross entropy) and λ is a hyperparameter. We experimented with
values of λ in {0., 0.1, 0.2} and found that λ = 0.2 performed best across all experiments. Note
that DCP + WRAP with λ = 0 is equivalent to conditioning prediction on WRAP-encoded location
features with FiLM.

D3G There are two training hyperparameters used in D3G, denoted λ and β in the original paper.
Similar to DCP, D3G has two loss terms: the task prediction loss (denoted Lpred in the original
paper) computed from the prediction head for the current domain, and the consistency loss (Lrel)
that is computed from all other prediction heads whose predictions are weighted by their relation to
the current domain. The final loss is of the form:

Lpred + λLrel

The β hyperparameter is used to average fixed and learned domain relations (see Yao et al. (2024)
for more details). We use a value of λ = 0.5 and β = 0.8 for all experiments.

IRM The IRM loss function includes two terms: the first is the task prediction loss and the second
is the IRM penalty term, weighted by λ which is a hyperparameter. In all experiments with IRM,
we use λ = 0.1 and compute IRM penalty on the final output from the image encoder (before the
linear prediction head).

CORAL The CORAL loss function includes two terms: the first is the task prediction loss and
the second is the CORAL penalty, computed as the sum of 1) the squared L2 norms of all domain-
pairwise differences between feature means in the current batch, and 2) the squared Frobenius norms
of all domain-pairwise differences between feature covariances in the current batch. The second term
is weighted by a hyperparameter λ. In all experiments with CORAL, we use λ = 0.1 and compute
the CORAL penalty on the final output from the image encoder (before the linear prediction head).

A.2 FULL EXPERIMENT RESULTS

In this section, we extend Table 1 to include results on the official WILDS OOD validation sets for
FMoW (Table 2) and PovertyMap (Table 3).
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Table 2: Our experiment results on the official WILDS OOD validation and test splits for FMoW.
Following the WILDS guidelines, these results are averaged across 3 random seeds. Standard error
is reported in parentheses.

Validation Set Test Set

Avg. Acc. (↑) Worst Acc. (↑) Avg. Acc. (↑) Worst Acc. (↑)

ERM 73.31 (0.50) 62.22 (0.08) 67.1 (0.07) 47.6 (0.86)
D3G 71.52 (0.17) 59.28 (0.85) 65.8 (0.24) 50.4 (0.92)
IRM 71.07 (0.26) 60.73 (1.30) 64.7 (0.12) 48.4 (1.34)
CORAL 71.55 (0.14) 59.74 (0.54) 65.3 (0.25) 49.4 (0.73)

ERM + WRAP 73.06 (0.55) 63.18 (1.29) 66.7 (0.34) 47.5 (0.55)
DCP + WRAP 72.56 (0.22) 63.55 (1.55) 66.9 (0.21) 51.8 (0.86)
D3G + WRAP 71.7 (0.11) 63.51 (2.35) 66.1 (0.26) 53.8 (0.22)

IRM + SatCLIP 70.84 (0.29) 60.31 (1.21) 65.2 (0.58) 50.6 (0.76)
CORAL + SatCLIP 71.6 (0.31) 61.77 (0.87) 66.2 (0.33) 50.1 (0.98)

Table 3: Our experiment results on the official WILDS OOD validation and test splits for Pover-
tyMap. Following the WILDS guidelines, these results are averaged across the 5 official data folds.
Standard error is reported in parentheses.

Validation Set Test Set

Avg. r (↑) Worst r (↑) Avg. r (↑) Worst r (↑)

ERM 0.80 (0.02) 0.48 (0.04) 0.78 (0.02) 0.45 (0.02)
D3G 0.80 (0.01) 0.46 (0.04) 0.76 (0.03) 0.37 (0.04)
IRM 0.78 (0.02) 0.43 (0.02) 0.77 (0.02) 0.41 (0.04)
CORAL 0.78 (0.03) 0.45 (0.05) 0.76 (0.03) 0.39 (0.05)

ERM + WRAP 0.79 (0.02) 0.48 (0.04) 0.77 (0.02) 0.44 (0.03)
DCP + WRAP 0.80 (0.02) 0.50 (0.02) 0.78 (0.02) 0.51 (0.04)
D3G + WRAP 0.80 (0.02) 0.48 (0.03) 0.76 (0.02) 0.43 (0.03)

IRM + SatCLIP 0.79 (0.02) 0.44 (0.03) 0.76 (0.03) 0.41 (0.04)
CORAL + SatCLIP 0.80 (0.02) 0.50 (0.03) 0.78 (0.02) 0.44 (0.05)
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