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ABSTRACT

A large corpus of diverse geospatial data layers is available around the world rang-
ing from remotely-sensed raster data like satellite imagery, digital elevation maps,
predicted land cover maps, and human-annotated data, to data derived from envi-
ronmental sensors such as air temperature or wind speed data. A large majority of
geospatial machine learning (GeoML) models, however, are designed primarily
for optical input modalities such as multi-spectral satellite imagery. We show im-
proved GeoML model performance on three benchmark datasets spanning clas-
sification and segmentation tasks when geospatial inputs are fused with optical
input imagery. Benefits are largest in settings where labeled data are limited and
in geographic out-of-sample settings, suggesting that multi-modal inputs may be
especially valuable for data-efficiency and out-of-sample performance of GeoML
models.

1 INTRODUCTION

Users of GeoML systems need agile models that can integrate the vast arrays of publicly available
geographic data into a cohesive representation of the world, allowing for accurate predictions even
with limited training data, or when faced with covariate shift across time, space, spectrum, and scale
(Rolf et al., 2024). However, a large subset of GeoML models have historically underutilized these
geographic and analytic inputs in the training stage. In this work, we study the label-efficiency and
out-of-sample generalization capability associated with adding non-optical, contextual inputs
to commonly used GeoML architectures.

While including additional input layers is clearly likely to increase performance for in-sample pre-
diction with ample training data, the effects of adding additional input layers in settings with limited
label data or out-of-sample deployment distributions are less clear. Additional geographic inputs
can inform a GeoML model with structural information that may allow the model to learn geospatial
image representations with fewer labeled training samples (label-efficiency). They can also require
more complex (data-hungry) models to represent the various modalities of data. Additional inputs
could help GeoML models generalize across regions. Or, they could cause models to overfit to local
patterns that only manifest in-sample, which could then decrease performance. While prior work
established that additional inputs can increase GeoML model performance in a variety of settings,
they did not study how this benefit differs across (i) amount of label data, and (ii) in-sample and
out-of-sample prediction settings. We aim to study how, in general, fusing geographical, contextual
clues affects model performance in these important settings.

Prior Work. Adding a non-optical context to machine learning models trained on geospatial im-
agery has been performed extensively in prior work. Tang et al. (2015) and Chu et al. (2019) add
GPS coordinates from the Yahoo Flickr Creative Commons dataset containing 100 million geo-
tagged images in the natural domain. Location embeddings are concatenated as additional features
to the final embedding from a Convolutional Neural Network (CNN). Mac Aodha et al. (2019)
performed fine-grained image classification with a location, time, and photographer prior to differ-
entiate between similar classes that are spatially disparate. Benson et al. (2024); Wang et al. (2020)
use geospatial data layers for task-specific downstream applications such as vegetation health pre-
diction and learning embeddings of neighborhood embedding-learning. Recently, Nedungadi et al.
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(a) Data-efficiency of 5-layer FCN trained with geographic input layers on the EnviroAtlas dataset. Shaded
regions report standard error over 5 random seeds.

Subset (%) Pittsburgh Austin Durham

RGB Prior All RGB Prior All RGB Prior All

1% 0.51 0.61 0.52 0.53 ± 0.03 0.58 ± 0.03 0.54 ± 0.02 0.61 ± 0.00 0.66 ± 0.03 0.62 ± 0.00
2% 0.51 0.58 0.54 0.53 ± 0.01 0.59 ± 0.01 0.55 ± 0.01 0.61 ± 0.00 0.67 ± 0.01 0.63 ± 0.01
5% 0.54 0.65 0.55 0.58 ± 0.00 0.65 ± 0.01 0.55 ± 0.01 0.64 ± 0.02 0.72 ± 0.01 0.62 ± 0.01

(b) Performance of EnviroAtlas prior, all versus RGB input with 1%, 2%, and 5% of input training data.

Figure 1: Performance and data-efficiency of a Fully-Convolutional Network on the EnviroAt-
las Land Cover Segmentation Dataset. Test subsets in Austin and Durham are out-of-sample test
splits. Modality “All” refers to a 4-band data product with stacked and geo-referenced road, build-
ing, waterway, and water body footprints. Results averaged over 10 random seeds. 1× standard
error of Pittsburgh reported ≤ 1e− 3 over 10 random seeds.

(2024) introduce large, multi-modal pre-training datasets built with Sentinel-2 imagery that contains
several geographic modalities like the ESA WorldCover dataset (Zanaga et al., 2022) and Digital
Elevation Maps. Although MMEarth (Nedungadi et al., 2024) is pre-trained on these modalities, it
is only used to predict the modalities given a Sentinel-2 RGB image as input; nonetheless, they find
that pretraining on multiple modalities has large gains for data-efficiency.

2 METHODS

Our experiments measure performance of models trained with just multispectral input and with ad-
ditional geographic inputs. To measure data-efficiency, we train models on subsets (simple random
samples) of the input dataset, where samples vary across random seeds during training. We conduct
our experiments on three benchmark datasets in ML for remote sensing.

The BigEarthNetv2.0 dataset (Sumbul et al., 2019; Clasen et al., 2024) is a multi-label classification
task that consists of approximately 550,000 pairs of Sentinel-2 image patches, paired with ground
labels of over 19 land cover classes. Our models input 10 Sentinel-2 bands to ensure consistency
with benchmark results reported in Clasen et al. (2024). Second, the EnviroAtlas dataset (Pickard
et al., 2015) consists of high-resolution (1m GSD) land cover maps derived from NAIP imagery;
we use the 5-class land cover segmentation task established in Rolf et al. (2022). Third, we use the
farmland parcel delineation dataset introduced as part of the SustainBench suite of datasets (Yeh
et al., 2021) – particularly the field boundary segmentation task benchmarked in Aung et al. (2020).

We choose the model architectures and additional geographic layers that make sense for each task.
For the two segmentation tasks, we fuse the original inputs (NAIP aerial imagery for EnviroAtlas
and Sentinel-2 RGB layers for SustainBench-Field-Delineation) with roads, waterways, and water-
bodies data from the Open Street Maps (OSM) repository (Haklay & Weber, 2008), following the
methodology in (Rolf et al., 2022). For the EnviroAtlas task, we use the pre-fused Prior layer from
Rolf et al. (2022), constructed to represent an uncertain probability distribution on the class values
for each pixel. Since all of these auxiliary layers are raster data, we simply stack them as additional
channels to the models during training and testing. To be comparable to previous benchmark results,
we use a fully convolutional network for the EnviroAtlas Dataset, and a U-Net (Ronneberger et al.,
2015) for the SustainBench-field-delineation dataset.
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Subset (%) w/ SatCLIP Aux. Token Vanilla ViT SatCLIP
(F1)

Vit-B Vit-B Vit-S Vit-S Vit-B Vit-B Vit-S Vit-S
Avg Prec F1 Avg Prec F1 Avg Prec F1 Avg Prec F1

1% 46.3 36.1 40.45 23.27 ± 1.27 44.6 32.1 39.78 22.95 ± 1.31 15.9
2% 55.6 45.9 47.96 33.82 ± 1.10 51.1 40.2 45.60 34.11 14.1
5% 62.7 54.1 59.98 47.84 ± 2.08 58.9 50.2 56.07 44.05 ± 1.13 10.1
20% 66.8 60.6 66.4 58.3 64.5 58.1 64.2 57.6 12.5
50% 70.1 64.7 70.1 64.3 68.7 63.5 69.2 63.7 21.7
100% 70.3 65.2 70.8 65.4 69.5 64.1 70.1 64.5 23.2

Table 1: Average Precision (Macro)/Multi-Label F1 score with Frozen (F) vs Register vs Fine-
tuned (FT) SatCLIP auxiliary token on the BigEarthNetv2.0 test split with a location encoder.
Results averaged over five random seeds. Unless specified, all results report ≤ 0.1% standard
deviation.

For the BigEarthNetv2.0 image-level multi-label classification task we use vision transformer (ViT,
Vit-B/8, Vit-S/8) architectures. To the Sentinel-2 input, we fuse general purpose global SatCLIP
location embeddings (Klemmer et al., 2023), which distill socioeconomic and environmental sig-
nals in satellite imagery into a pretrained location encoder g(lat,lon) with output dimension 256.
Embeddings from SatCLIP’s location encoder are passed as an auxiliary token to the ViT’s encoder
along with image tokens. We add a linear layer to SatCLIP’s location encoder that maps the 256-
dimensional SatCLIP embeddings to the desired sequence length expected by the Vit-S/ViT-B. The
auxiliary SatCLIP token is assigned a positional encoding of N + 1 where N is the total number of
encoder tokens excluding the classification token. For our main experiments, the parameters within
the SatCLIP model g(lat,lon) are frozen; we experiment with unfreezing these weights in Figure 3.

To test performance across in-domain (ID) and out-of-domain (OOD), we use a combination of the
existing train/test splits in each dataset and add data splits when needed. Since the BigEarthNetv2.0
uses a geographically buffered train/val/test split, the benchmark results already test OOD perfor-
mance to some degree. The EnviroAtlas task from Rolf et al. (2022) tests both ID performance and
OOD performance, since the training set is restricted to Pittsburgh, PA, but there are test sets in
Pittsburgh (ID), Durham, NC (OOD), and Austin, TX (OOD). For the SustainBench task, we use
the benchmark ID test split, and generate a new spatially buffered split (see Appendix Figure 4) to
test OOD performance.

3 RESULTS AND DISCUSSION

We found that adding contextual, geographic inputs improves model performance, with largest gains
in settings with limited label data across all 3 tasks. In table 1, a vision transformer trained with an
auxiliary SatCLIP token (ResNet18, L = 10) improves multi-label classification average precision
on the BigEarthNetv2.0 dataset, on average, by 3.3% when trained on between 1 to 5% of the
training dataset. The token-aided ViT also exhibits a 4.5% improvement in multi-label F1 score.
Note that with increasing training data, the improvement in average precision and F1 score drops to
1.6% , highlighting the label-efficiency associated with passing an auxiliary multi-modal token to
the ViT. We observe similar improvements in data efficiency when a FCN is trained on EnviroAtlas’s
land-cover classification dataset (Figure 1).

We also found that fusing additional geographic input layers to remotely sensed imagery can signif-
icantly aid geographic domain generalization. While the value of additional input layers is clear in
the low-label regime for all test cities in the EnviroAtlas dataset, Figure 1 shows an improvement
in overall test accuracy in out-of-distribution test cities (Austin and Durham) across all amounts of
training data. From Figure 2, we find the performance improvements with low data holds over our
proposed spatially-buffered test split of the SustainBench-field-delineation dataset. A U-Net trained
with an OSM raster layer exhibits a 5% dice-score improvement in-sample and a 4.6% improve-
ment out-of-sample when trained on between 1-10% of training data. Note that the test split in the
BigEarthnetv2.0 dataset is also spatially buffered from the training data.

To determine if arbitrary tokens aid GeoML model performance on the BigEarthNet multi-label clas-
sification task, we allow for the pre-initialized SatCLIP model g(lat,lon) to be trainable as a token —
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Subset (%) In-sample Split Out-of-sample Split

RGB RGB + OSM RGB RGB + OSM

1% 2.96 12.47 23.07 32.17
5% 38.27 39.72 37.30 39.77
10% 46.12 49.21 41.64 43.88
35% 53.05 53.91 49.98 51.02

Figure 2: Performance and label-efficiency of a U-Net trained on SustainBench’s Farmland
Parcel Delineation Dataset. Label efficiency and out-of-sample performance reported as Dice and
IoU scores averaged over 5 random seeds. Bottom: Test dice score for subsets 1% to 35%.

Sub% F SatCLIP FT SatCLIP

1% 46.3/36.1 45.4/34.7
2% 55.6/45.9 53.2/42.8
5% 62.7/54.1 63.5/56.2

20% 66.8/60.6 65.3/59.1
50% 70.1/64.7 67.1/60.1
100% 70.3/65.2 66.0/59.1

Figure 3: Frozen (F) vs Fine-Tuned (FT) SatCLIP auxiliary ViT token on the BigEarthNetv2.0
land-cover classification task: Maps: PCA embeddings of the SatCLIP tokens: frozen (left) vs
finetuned (right). Table: Label-efficiency results on the BigEarthNetv2.0 classification task. Average
precision/multi-label F1 score (macro-averaged) reported.

effectively, finetuning the SatCLIP token on an image-classification pseudo-task. From Figure 3, we
find that the label-efficiency and out-of-sample performance are worse when the SatCLIP weights
are not frozen during training. Figure 3 shows that the fine-tuning SatCLIP tokens leads to embed-
dings that are highly localized within various countries covered by the BigEarthNetv2.0 dataset. It
is likely that this results in the augmented ViT overfitting to the auxiliary SatCLIP token leading to
lower test set performance.

4 CONCLUSION

Improvements in label-efficiency and out-of-distribution GeoML performance directly translate to
applicability for real-world, downstream applications in climate and ecological monitoring. Here,
we found that fusing additional geographic input layers into GeoML models resulted in better label-
efficiency and out-of-sample performance, compared to models that only used multispectral input.
To get these improvements, we used simple and effective multi-modal geospatial data layer fusion
methodologies – input stacking for raster layers, and adding auxiliary multi-modal tokens to a ViT
for location embeddings. Given the simplicity of the architectures used in this work (5-layer FCN
and Vanilla ViT-B), we hypothesize that the results presented are merely a lower bound in data-
efficiency improvements with multi-modal inputs.

These experimental settings can be extended to several benchmark datasets with minimal modifi-
cations to the training procedure. Auxiliary tokens, for example, can be generated from any input
modality source and fused with a ViT’s image tokens. Future work will also perform a comprehen-
sive analysis of interpretability of models augmented with auxiliary geographic tokens and study
which and when additional geographic inputs improve data efficiency and out-of-distribution per-
formance of GeoML models.

4



ICLR 2025 Machine Learning for Remote Sensing (ML4RS) Workshop

REFERENCES

Han Lin Aung, Burak Uzkent, Marshall Burke, David Lobell, and Stefano Ermon. Farm parcel
delineation using spatio-temporal convolutional networks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition workshops, pp. 76–77, 2020.

Vitus Benson, Claire Robin, Christian Requena-Mesa, Lazaro Alonso, Nuno Carvalhais, José
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A EXPERIMENTAL SETUP

FCN on EnviroAtlas Land Cover Segmentation: We train on EnviroAtlas’ train images in Pitts-
burgh, PA on a 5-layer Fully Convolutional Network with 64 filters and an output smoothing of
10−2. A batch size of 128 and a learning rate of 1e − 3 is fixed across all training data subsets
and random seeds reported in Figure 1. We fix the lower bound learning rate to 1e − 7. Table 3
reports the number of training epochs each data-efficient FCN is trained on. Note that FCNs trained
on 1% of EnviroAtlas’ training data for 700 epochs trigger our early-stopping logic between epoch
200-300. We use TorchGeo’s RandomGeoSampler with an input image size of 128. Our test
dataset uses TorchGeo’s GridGeoSampler with an input image size of 256 and a stride of 512
to avoid overlapping image patches. Our multi-modal inputs include a Road, water, waterway, and
waterbody footprint from (Haklay & Weber, 2008).

ViT on BigEarthNet Multi-label Classification:

Vision Transformers (ViTs) (Dosovitskiy (2020)) utilize the transformer architecture proposed in
(Vaswani et al., 2017) for image classification tasks. Input images are decomposed into a sequence
of small, non-overlapping patches X = (x1, . . . , xN ) where N denotes the total number of input
patches. N Input patches are mapped to embeddings (tokens) with a linear-layer projection. For
multi-label classification with the BigEarthNet dataset (Sumbul et al., 2019), we add an additional
classification token denoted by [CLS] with a positional encoding of 0, and an auxiliary token con-
taining SatCLIP location encoder embeddings with a positional encoding of N + 1. A pre-trained
SatCLIP location encoder efficiently summarizes terrain and geographic information by encoding
visual similarities of spatially distant environments. [CLS] is a learnable additional token intro-
duced to capture label information. Unlike (Cong et al., 2022; Reed et al., 2023) that use various
versions of sinusoidal positional encodings that are sensitive to Ground Sampling Distance (GSD)
and temporal information, we augment image patches X = (x1, . . . , xN ) with scalar positional
encodings (1, 2, . . . , N). We do not observe a significant performance improvement by using sinu-
soidal positional encodings commonly used in Masked Autoencoders (MAEs), and attribute this to
the large spatial redundancies present in most satellite-image datasets.

SustainBench Field Boundary Segmentation The SustainBench suite of benchmarks proposed
in Yeh et al. (2021) contains a collection of 15 benchmark tasks in machine learning for remote
sensing spanning 7 United Nations’ sustainable development goals (SDGs). We use SustainBench’s
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Figure 4: Proposed train-validation-test split of the SustainBench-field-delineation dataset.
Original train-validation-test split (left) and proposed spatially-buffered split proposed (right) used
in Figure 2

field-delineation task which targets the “No Hunger” SDG. SustainBench-Field-Delination consists
of Sentinel-2 imagery in France in 2017. Each input image is at a 10m ground-sampling distance
and has a size of 224 × 224 pixels corresponding to an approximately 5 kilometer surface area
covered per image. We train a U-Net (Ronneberger et al., 2015) on simple random samples of the
original training dataset and a spatially-buffered test split shown in Figure 4. The spatially-buffered
test split is created to allow an in-sample train and validation set, and a test split that only spans
southern France. This is implemented by creating a latitude threshold that is modified to collect a
test-dataset size comparable to the original test-dataset size in Yeh et al. (2021). A brief algorithm
that creates the spatially buffered test split is detailed in algorithm 1. We pull rasters of roads, water,
waterbodies, and buildings from OSM (Haklay & Weber, 2008) given the input image’s bounding
co-ordinates. We train a U-Net with an identical learning rate of 1e−4 for 20 epochs scaled linearly
according to Table 3 (Note: Subset size of 1 is trained for 20 epochs which implies subset size
of 0.01 is trained for 2000 epochs). We report test dice and IoU segmentation scores for the field
boundary segmentation task based on the best in-sample validation performance. Dice score (or F1
score) is defined as Dice = 2·TP

2·TP+FP+FN , and the Intersection over Union (IoU) score.

Algorithm 1 Create spatially-buffered train-validation-test split for SustainBench-Field-
Delineation dataset

1: Input: Train, Validation, Test CSV Files with (lat, lon) co-ordinates per image, random seed.
2: Output: New CSV files for train-validation-test.
3: D ← COMBINE(train, val, test)
4: for all Image s ∈ D do
5: lat(s)← COMPUTECENTERLATITUDE(s)
6: end for
7: Determine threshold T ∗ so that Count{s ∈ D : lat(s) < T ∗} meets the desired test size.
8: Test← {s ∈ D | lat(s) < T ∗}
9: Pool← D \ Test

10: (Train, V al)← RANDOMSPLIT(Pool, train-validation-ratio, random seed)
11: SAVE DATASET(Train, Val, Test)
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Subset Size Training Epochs
100% 7
75% 9
50% 14
35% 20
20% 35
10% 70
5% 140
2% 350
1% 700

Table 3: Training epochs scaled by subset size for all label-efficiency experiments.
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