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ABSTRACT

In machine learning for geographic data, we often observe differences in data
availability and distribution shifts across distinct geographic units, e.g., conti-
nents. This is a common challenge in remote sensing tasks, such as crop yield
forecasting or flood mapping. In many of these scenarios, we have models trained
on a data-rich region and apply domain adaptation to transfer predictive capabili-
ties to the target region. However, the effectiveness of domain transfer can suffer
from distribution shifts, posing critical challenges for model deployment. In this
work, we show that, even in the absence of labels, certain domain distance mea-
sures, based on image and location embeddings, can serve as a proxy measure for
transfer performance. We further highlight this capacity on a set of real-world ge-
ographic adaptation datasets, spatial splits for domains, and models for adaptation
training.

1 INTRODUCTION

Machine learning on satellite images has been widely used for a range of applications relevant to
climate change adaptation and mitigation, such as crop yield prediction (Ansarifar et al., 2021),
disaster forecasting (Linardos et al., 2022), and pollution monitoring (Hu et al., 2017). However,
the quantity, quality, and composition of satellite image data is not balanced across geographical
regions due to many aspects, including population, environment, socioeconomic factors, etc. (Mar-
tin Sudmanns & Lang, 2020; Rolf et al., 2024). Hence, training models independently for each of
the regions can lead to divergent performance given the discrepancies in the nature and availability
of data. Instead, a common setting is to train models on data-rich regions to learn representations
from satellite images and transfer predictive capabilities to the target data-poor regions via domain
adaptation.

This approach is not straightforward as distribution shifts exist between geographic regions, with
conditions in satellite images such as architectural styles, landscapes, and vegetation differing due
to different climates, cultures, and environmental conditions (Federici et al., 2021). These shifts
can pose significant challenges for machine learning models, as they may struggle to generalize
effectively to target domains with substantially different ground conditions from source regions
(Rolf et al., 2024). Therefore, it might not be ideal to blindly transfer models to out-of-distribution
geographical regions for optimal performance.

We posit that distances between domain-specific data distributions can serve as a good indicator of
the effectiveness of transfer between domains. Intuitively, a model is more likely to transfer ade-
quately between domains that are distributionally similar than across those that are dissimilar. To
explore the feasibility and effectiveness of using distance measures to predict out-of-distribution
transfer performance for satellite imaging tasks, we design experiments to test and analyze the rela-
tionship between different distances and performance changes in domain adaptation.
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2 METHODOLOGY

We seek a notion of distance measure that can serve as reliable predictors of domain adaptation
performance for transferring a discriminative model between domains. We first introduce the distri-
bution shift problem in satellite image data (and geographic data more generally). Then we discuss
the two main steps of our methodology: distance computation between geographic domains and
model training for domain adaptation.

Problem Formulation For satellite images, distribution shifts may appear when data used for
training and evaluating models are collected at different locations, as visual markers in images can
change due to human activity and environmental processes. In addition, climatic, social, and envi-
ronmental factors can lead to shifts in marginal distribution on labels in the collected data.

In this work, we focus mainly on FMoW-Wilds, a classification dataset of land use and building
function with RGB satellite image inputs. Figure 1 shows an example of distribution shifts in satel-
lite image classification.

Figure 1: Example of geographic distribution shift in FMoW-wilds dataset: Two images from the
class “Shopping Mall” appear vastly different depending on their geographic domain.

Distance Computation To obtain the distance between any domain pairs, we first compute the
pairwise distance matrix for all the data points across the domains, and we then aggregate the dis-
tances through averaging or optimizing a cost objective over distribution. Given two domains from
the same dataset, we propose 3 different sets of distances to compute:

• Average cosine distance: angular distance between embedding vectors.
• Wasserstein distance: optimal transport based distance between embedding vectors.
• Average arc distance: geographic distance between image locations.

Specific definition and formulas of these distances are included in Appendix A.1. To make these
distance measures comparable to each other, we apply normalization so that results for each type of
distances have range 0 to 1.

Domain Adaptation In the step of domain adaptation, we fit pretrained image models on a source
domain and evaluate the model performance on a target domain. Specifically, given a set D of k
domains in the dataset {D1,D2, . . . ,Dk}, we fine-tune one image model Mi for each domain Di.
Then for every model Mi, we firstly evaluate and record its performance on the source domain Di

it is trained on. Next, we evaluate the performance under zeroshot and fewshot settings on each of
the other domains except the source domain, i.e., domain Dj ∈ D\Di. We then correlate transfer
performance scores with domain distances.

3 EXPERIMENTS

We conduct several experiments to evaluate our central hypothesis. First, we introduce the different
embeddings we use for computing distances and the datasets for domain adaptation. For model
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(a) ResNet18 embeddings (b) SatCLIP embeddings (c) 0-shot (d) 10-shot

Figure 2: The left two figures are normalized pairwise Wasserstein distances of embeddings between
continent domains in FMoW-wilds dataset. The right two figures are domain adapatation accuracy
on FMoW-wilds dataset with DenseNet121. Rows represent source domains which image models
are initially trained on. Columns represent target domains which image models are evaluated on.
Percentages in the parentheses following the accuracy values are the relative drop in classification
accuracy on the test set compared with performance of models trained on the target domain.

training details and other factors we explore such as splitting criteria for domains and models used
for domain adaptation, see our Appendix B.

Embeddings. To generate embeddings, we apply pretrained models to the data, including image-
based models and location-based models. First, we use pretrained image models, including
ResNet18, ResNet50 (He et al., 2016) and ViT-Small (Dosovitskiy et al., 2021), to obtain vector
representations of satellite images. Besides, geographic context can be relevant in many real-world
modeling tasks, as similar images from different regions may have subtle differences yet belong to
different classes. To obtain location-specific characteristics, we use Satellite Contrastive Location-
Image Pretraining (SatCLIP), a location encoder model pretrained by matching a large dataset of
satellite images with their geographic coordinates (Klemmer et al., 2025). With global geographic
coverage, SatCLIP projects longitude and latitude pairs into rich representations that correspond to
image features expected at a given location.

Experimental Datasets. We primarily focus on distance analysis and model performance on the
FMoW-Wilds dataset, a classification dataset that contains satellite images of 62 different func-
tional classes of built-environment and land use (Koh et al., 2021). We use a subset of the dataset
that contains approximately 200 thousand data points, and we follow the same spatial splits in the
original dataset and include 5 main geographical continents (Asia, Europe, Africa, Americas, and
Oceania) as domains. The downstream task is to predict the respective class from image features
(classification).

4 RESULTS AND ANALYSIS

In this section, we present the main results of our study. A more comprehensive set of results and
figures can be found in Appendix C.

Domain Distance. Figure 2a and Figure 2b show the Wasserstein pairwise distances across differ-
ent pairs of continent domains in FMoW-wilds dataset. Compared with cosine distances, Wasser-
stein distances are larger where embedding distributions between domains have more discrepancies.
Normalized distances from image embeddings are more concentrated towards the lower and upper
bound ends, where SatCLIP embeddings yield smoother distance distributions. Arc distance, on the
other hand, exhibits a completely different pattern as raw geographic distance.

Domain Adaptation. In Figure 2c and Figure 2d, we show primary results of domain adaptation
performance of DenseNet121 model in FMoW-wilds dataset under zeroshot and fewshot settings.
Entries on the diagonal show test results of models pretrained on the same domain. To make the
accuracy values comparable across different models and different domain pairs, we further compute
relative change in the performance compared with the models trained and evaluated on the target
domain, given in parentheses.
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4.1 ANALYSIS

We now compare the relative drop in test performance against the corresponding distances between
the two domains, accounting for different factors that may affect the relationship. We show our main
findings in Figure 3 with analysis across different types of distance measures.

Figure 3: Comparison of domain distance and relative change of domain adaptation performance in
FMoW-wilds dataset across different types of distance measures.

Both cosine and Wasserstein distances follow a downward trend, where larger distances between do-
mains would lead to a greater drop in adaptation performance, and the correlation is moderate (with
p-values between 0.14 and 0.27) across image and location embeddings. This suggests that cosine
distance and Wasserstein distance can be predictive of the potential changes in domain adaptation
performance. On the other hand, arc distance exhibits a weak upward trend suggesting an unstable
and insignificant correlation. This is not surprising: satellite images taken at two far apart locations
can still be very similar to each other, and raw geographic distance provides an incomplete signal.

It is important to reiterate here that distances based on SatCLIP embeddings represent semantic
features obtained from satellite imagery, while only requiring geographic coordinates as inputs.
Compared with image embeddings, which require a full pass through all the image data, this be-
comes a much more convenient method to compute and obtain results for performance analysis.
Furthermore, SatCLIP embeddings can be obtained for any location over landmass globally.

Lastly, we expand our analysis to potential confounding factors affecting our hypothesized relation-
ship, including datasets, geographic domains, and models used for domain adaptation tasks. The
results of ablation studies are included in Appendix C.3. Despite the changes in different compo-
nents of a domain adaptation task, we observe the common relationship that domain pairs with larger
distances tend to exhibit greater performance drops when adapting from one domain to another.

5 CONCLUSION

Our analysis demonstrates that distance measures between two geographic domains can serve as a
predictor for performance change in adaptation from source domain to target domain, and larger
domain distances typically imply decreasing domain adaptation performance. This finding holds
across different datasets, different definitions of geographic domains (continents and biomes), and
different predictive models. In the future, we plan to leverage this finding for selecting optimal
datasets from all available source domains to achieve maximize adaptation performance on the target
domain.

Despite the contributions and promising future steps, there are some limitations in our experiments.
We use the average values of pairwise distance matrix for cosine distance and arc distance, but they
are point estimates of the distances between data, which cannot accurately describe the distribution
of distances across two domains. Therefore, other choices of estimates that account for the distribu-
tion should be considered. The spatial splits for domains are at relatively large scale (e.g., continents
or biomes), which could make our correlation findings less effective. Moreover, we should take into
account of a larger variety of datasets and models in each experiment setting to ensure the robustness
and reliability of our conclusion.
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A METHODOLOGY

A.1 DISTANCE COMPUTATION

A.1.1 AVERAGE COSINE EMBEDDING DISTANCE

Cosine distance measures the differences in the embedding space of geographical data. Let uxik
and

vxjl
be the embeddings of data points xik from domain Di and xjl from domain Dj . The cosine

embedding distance is defined as

c(uxik
, vxjl

) = 1−
uxik

· vxjl

∥uxik
∥2∥vxjl

∥2

We take the embeddings of input data and compute cosine distances across each pair of the em-
beddings from different domains. To further obtain the distance between two domains, we take the
average over the matrix of cosine embedding distances.

A.1.2 WASSERSTEIN DISTANCE

The Kantorovich formulation of the Optimal Transport (OT) problem is defined as

min
π∈Π(µ,ν)

∫
X×X

c(x, y)dπ(x, y),

where c(·, ·) is a cost function, and Π(µ, ν) represents the set of couplings satisfying

Π(µ, ν) = {π ∈ P(X × X ) :

∫
X
π(x, y)dy = µ(x),∫

X
π(x, y)dx = ν(y)}

We use cosine distance as the cost metric, and the formulation then quantifies the transformation
cost between distributions in the embedding space, while accounting for distribution geometry and
underlying data structure.

For computational complexity concerns, we choose to use the entropic regularized version of the
Wasserstein distance, the Sinkhorn distance, formulated with an additional penalty term in the opti-
mization problem

min
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y) + ϵ

∫
π(x, y) log π(x, y)dxdy,

where ϵ is the regularization parameter.

In implementation, we make use of the ot.solve function in the Python Optimal Transport (POT)
package to efficiently solve the above optimization objective.

A.1.3 AVERAGE ARC DISTANCE

Arc distance represents the geodetic distance, or the geographical distance measured in the length
of the shortest arc between two locations along the earth surface in miles. This can be computed
with longitude-latitude coordinates of a pair of locations. Similar to cosine embedding distance, we
take the average of arc distances between data points across two domains as the distance between
the domain pair.

To keep the range of arc distance consistent with the other types of distances, we divide all raw
results of arc distances by 12436, which is the distance between the north pole and south pole, as
well as the maximum possible arc distance for any two places. Hence, the rescaled arc distance has
the range of 0 to 1.
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B EXPERIMENT DETAILS

B.1 MORE EXPERIMENT SETTINGS

In addition to embeddings from different types of models, we explore whether the hypothesis holds
for different criteria to split domains from a dataset and different models for domain adaptation
tasks.

Domain Split Criteria Different criteria for splitting geographical domains can lead to data clus-
ters with distinct structures, and thus it is important to check if our observations only pertain to
continent domains. Firstly, we split domains by continent regions, including Asia, Europe, Africa,
Americas, and Oceania, which is consistent with the domain categories in FMoW-wilds dataset. We
also examine the biome splits, where biome describes a large geographical area that has particu-
lar traits of vegetation, climate, and ecosystem. The five major biome categories include aquatic,
grassland, forest, desert, and tundra (National Geographic Society, 2024).

Model Training We train multiple image models for the domain adaptation schemes of satellite
images to ensure that changes in task performance across domains are not solely attributed to the
choice of a specific model. In our work, we include ResNet18 and DenseNet121 (Huang et al.,
2017) for training.

B.2 EXPERIMENT AND MODEL TRAINING DETAILS

B.2.1 MODEL ENCODINGS

Image based models To ensure the variety of image models used for embedding generation and
distance computation, we include ResNet18, ResNet50, and ViT-Small, covering both convolutional
neural network and vision transformer architectures.

ResNet18 and ResNet50 are widely used Convolutional Neural Network (CNN) architectures in the
field of deep learning (He et al., 2016). ResNet18 and ResNet50 have the same backbone of Residual
Networks, where ResNet50 (with ∼25.6 million parameters) contains more layers and parameters
than ResNet18 (with ∼11 million parameters).

Vision Transformer (ViT) is a more recent family of pretrained models that use transformer archi-
tecture and patch-based representations on image tasks (Dosovitskiy et al., 2021). In this work, We
choose ViT-Small (with ∼22 million parameters) on a similar scale of parameters to other models.

All the image models used are initially loaded with the pretrained weights on ImageNet dataset.

Location based models SatCLIP has multiple pretrained checkpoints trained with different vision
encoders and spatial resolution L, where L describes the number of Legendre polynomials used
for spherical harmonics location encoding. To account for the potential differences of geospatial
features between small and large scale of resolution, we use two SatCLIP pretrained models trained
with ResNet50 image encoder to generate embeddings, one with L = 10 covering low resolution
and the other with L = 40 yielding high-resolution and more fine-grained embeddings.

B.2.2 DATASETS

FMoW-wilds FMoW-wilds dataset is a part of the Wilds benchmarks (Koh et al., 2021) and
adapted from the original Functional Map of World (FMoW) dataset (Christie et al., 2018). FMoW
dataset contains over 1 million satellite images with abundant metadata for classification tasks of
62 different functional purposes of buildings and land use. FMoW-wilds further adapts the dataset
with the primary focus of distribution shifts, and data is split into domains defined by years and
geographical regions.

Note that FMoW-wilds targets the domain generalization problems across both temporal and spatial
components, whereas our work only keeps the spatial part, i.e., building domains based on their
geographical locations. Specifically, we combine the data from year 2016 and 2017, and we split
the data into 5 main geographical domains, following the original region splits in the dataset: Asia,
Europe, Africa, Americas, and Oceania.
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Table 1: Data size of train, validation, and test splits for each domain in FMoW-wilds dataset.

Domains Train Validation Test Total
Asia 33736 4839 4963 43538
Europe 39567 5813 5858 51238
Africa 18624 2657 2593 23874
Americas 55361 7749 8024 71134
Oceania 4040 578 666 5284

In addition to the satellite image and land use category, each data is accompanied by metadata,
including longitude and latitude of the location in the image, the timestamp when the satellite image
was taken, the country code, etc.

Specific sizes of each partition by domains and train, validation and test splits can be found in
Table 1.

Forest Cover In addition to FMoW-wilds dataset, we obtain a forest cover dataset that is included
as part of the MOSAIKS benchmark. The dataset includes the percentage of vegetation with height
greater than 5 meters for satellite images taken globally with resolution of approximately 30m by
30m (Rolf et al., 2021). The downstream task is to predict forest cover percentage from image
features (regression), and we report the performance based on coefficient of determination.

In total, there are 398484 samples in the training set and 99622 samples in the test set. For validation
purposes, we randomly select 20% of the training data and hold them out as a validation set.

B.2.3 DOMAIN SPLIT CRITERIA

To obtain different sets of domains with the same dataset, we make use of the shapefiles provided
from United States Geological Survey (USGS) which describe the domain multipolygons in terms
of longitude and latitude coordinates. Then with the location information in metadata, we partition
the dataset and group data into region domains.

Continent The continent domains include Asia, Europe, Africa, Americas, and Oceania. Note
that Americas consist of both North America and South America. We drop location points that
do not belong to these main continents (e.g., places in Antarctica or in the ocean), since they only
constitute a very small portion of the data.

Biome The biome domains include aquatic, grassland, forest, desert, and tundra (National Geo-
graphic Society, 2024). Since the main tasks included this work primarily focus on objects on land,
such as buildings and forests, we do not include aquatic biome in the domain list. For some of the
datasets used, the size of data for tundra biome is very small, because the biome is mainly located
in the Arctic regions. We then exclude tundra biome in such cases.

B.2.4 MODEL TRAINING AND HYPERPARAMETERS

Training on source domain After loaded with pretrained weights on ImageNet, the final linear
layers of all models are replaced with classification heads with proper number of classes. During
training, we use batch size of 64 and Adam optimizer with learning rate 10−4. A maximum number
of epochs is set to 50 with early stopping implemented.

Adapting to target domain With image models trained on source domains, we further fine-tune
and evaluate them on target domains in zeroshot and fewshot settings. For zeroshot, we directly
evaluate the performance of image models on test set of target domain. In fewshot cases, we fit
models on a subset of training data in the target domain with restrictions on the number of samples
randomly selected per class. Since randomness is involved with subsampling examples, we run the
pipelines 3 times and report the average as the transfer performance. During training, we use batch
size of 32 and Adam optimizer with learning rate 10−4. We set maximum number of training epochs
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to 50 and use early stopping. For evaluation on target domain, we always load model weights with
the best validation performance.

C RESULTS

C.1 DOMAIN DISTANCE

We show normalized pairwise cosine and arc distances in FMoW-wilds dataset in Figure 4, and
we present normalized Wasserstein distances with entropic regularization ϵ = 0.1, ϵ = 0.01, and
ϵ = 0.001 in Figure 5.

(a) ResNet18 (b) ResNet50 (c) ViT-Small

(d) SatCLIP (L=10) (e) SatCLIP (L=40) (f) Arc Distance

Figure 4: Normalized pairwise distances between continent domains in FMoW-wilds dataset. (a)-(e)
Average cosine distances of embeddings from different pretrained models. (f) Arc distance.

C.2 DOMAIN ADAPTATION

We show results of domain adaptation performance in FMoW-wilds dataset in Figure 6, including
both ResNet18 and DenseNet121 under zeroshot and fewshot settings. To make the accuracy val-
ues comparable across different models and different domain pairs, we compute relative change in
performance compared with the models trained and evaluated on the target domain:

∆ =
acc(Ds ⇒ Dt)− acc(Dt)

acc(Dt)
,

where acc(Ds ⇒ Dt) represents the adaptation performance from source domain Ds to target do-
main Dt, and acc(Dt) is the test accuracy of the same model fully trained on Dt and evaluated on
test set for Dt.

The domain adaptation tasks from Oceania to other continents are far more difficult with the greatest
relative drop in performance, while the tasks transferring from other continents to Oceania are com-
paratively easier. We believe the main reason is the large gap of dataset size between Oceania and
other continents. Besides, DenseNet121 achieves even better performance (6.13% increase) through
adapting from Americas to Oceania in fewshot settings than DenseNet121 directly trained on the
full dataset of Oceania. This further supports the prospects that having models pretrained on data-
rich source domains and adapted to data-poor target domains. However, being trained with data
from other continents such as Asia (15.95% drop), Europe (16.49% drop), Africa (38.56% drop)
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(a) ResNet18, ϵ=0.1 (b) ResNet18, ϵ=0.01 (c) ResNet18, ϵ=0.001

(d) SatCLIP (L=10), ϵ=0.1 (e) SatCLIP (L=10), ϵ=0.01 (f) SatCLIP (L=10), ϵ=0.001

(g) SatCLIP (L=40), ϵ=0.1 (h) SatCLIP (L=40), ϵ=0.01 (i) SatCLIP (L=40), ϵ=0.001

Figure 5: Normalized pairwise Wasserstein distances between continent domains in FMoW-wilds
dataset using embeddings from different pretrained models and weights of entropic regularization
for optimal transport solver.

does not contribute positively despite having much more training data on Oceania. We notice that
the class distribution of Americas data has sufficient examples in classes from the support of data
distribution of Oceania, especially the majority classes of satellite images taken in Oceania. Hence,
we believe it is also important that source domains on which models are mainly trained should have
support closer to the distribution in target domains, and this further motivates leveraging domain
distances to design and construct a good source dataset or domain to achieve optimal generalization
performance.

C.3 ABLATION STUDIES

We further conduct ablation studies to analyze potential confounding factors affecting our results.
Figure 7 shows the trends under two different datasets, FMoW-wilds and MOSAIKS-Forest, which
have very different target tasks, land use classification and forest coverage regression. In Figure 8,
we explore the relationship using FMoW-wilds dataset with a different definition of geographic
domain. As explained in section B.2.3, we choose to partition data based on their geographical lo-
cations into continents or biomes, and we apply domain adaptation and analyze the results. Figure 9
reports the relationship from the perspective of using different models for domain adaptation task.
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(a) ResNet18, 0-shot (b) ResNet18, 10-shot

(c) DenseNet121, 0-shot (d) DenseNet121, 10-shot

Figure 6: Domain Adaptation Accuracy for ResNet18 and DenseNet121 on FMoW-wilds dataset.
Rows represent source domains which image models are initially trained on. Columns represent
target domains which image models are finally evaluated on. Percentages in the parentheses follow-
ing the accuracy values are the relative drop in classification accuracy on the test set compared with
performance of models trained on the target domain.

Figure 7: Comparison of Wasserstein domain distance and relative change of domain adaptation
performance across different datasets. Performance results are reported on 0-shot adaptation accu-
racy of ResNet18.
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Figure 8: Comparison of Wasserstein domain distance and relative change of domain adaptation
performance in FMoW-wilds dataset across different domain split criteria. Performance results are
reported on 0-shot adaptation accuracy of ResNet18.

Figure 9: Comparison of Wasserstein domain distance and relative change of domain adaptation
performance in FMoW-wilds dataset across different models for adaptation task. Performance re-
sults are reported on 0-shot adaptation accuracy of ResNet18 and DenseNet121.
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