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ABSTRACT

High-resolution imaging is essential in remote sensing and geoscience for precise
environmental and geological analysis. DR-SCAN (Dual-Branch Residual Spatial
and Channel Attention Networks), a neural network architecture for image super-
resolution across these domains, is introduced. Evaluated on the UCMerced Land
Use and DeepRock-SR datasets, DR-SCAN demonstrates adaptability to diverse
remote sensing landscapes and effectiveness in resolving pore-scale geological
features. Feature map visualizations highlight the model’s ability to prioritize crit-
ical spatial features, enhancing interpretability for domain-specific applications.

1 INTRODUCTION

High-resolution (HR) images are used in various remote sensing and geoscience tasks ranging from
regional geological mapping (Kruse et al.,|2003), environmental monitoring (Tucker & Townshend,
2000), and precision farming (Jin et al.,|2019), to name a few. However, hardware and environmental
constraints limit the resolution of the images collected. Single-image super-resolution (SISR), is a
process of reconstruction of an HR image using the low-resolution (LR) counterpart, thus enhancing
the use of images for downstream scientific and operational analyses.

In this work, DR-SCAN, a novel dual-branch architecture for SISR tailored to remote sensing and
geoscience applications is presented. Moving away from the traditional single-branch neural net-
work architectures that learn local details (e.g. edges, fine grained-textures) and global structures
(e.g. terrain features) together in a shared feature space, our DR-SCAN architecture separates these
components into two specialized branches and fuses them later on. Specifically, a shallow branch
dedicated to learn high-frequency details and a deep branch intended to capture a broader spatial
context. Subsequently, these complementary outputs are fused, producing super-resolution (SR) im-
ages. Notably, DR-SCAN also provides a mechanism for a user-driven adaptation, allowing the
user to modulate how much emphasis should be given to local and global features, an attribute that
could be particularly valuable while reconstructing remote-sensing and geoscience images. Further-
more, by visualizing the feature maps of these two branches, an interpretable evaluation can be
made so that domain experts can better understand the SR process.

Earlier interpolation-based methods (e.g. bicubic) often produce blurry outputs (Wang et al., |[2020),
while early deep learning (DL) models (e.g. SRCNN (Dong et al.,[2014), VDSR (Kim et al., 2016))
and deeper residual networks (e.g. EDSR (Lim et al.| 2017))) improved SR but relied only on pixel-
wise loss functions (e.g L1, MSE), leading to smooth textures and loss of high-frequency details
in some cases (Wang et al., 2022)). Later, generative adversarial networks (GANs) were used for
SISR (e.g., SRGAN (Ledig et al.l 2017), ESRGAN (Wang et al., [2018))), enabling the restoration
of sharper details using perceptual and adversarial losses. However, GANs can be challenging to
train. Attention-based networks like RCAN (Zhang et al.,[2018) further improved feature selection
by weighting channel-wise and spatial-wise features. However, without explicitly disentangling
small- and large-scale features, such architectures may lack adaptability to various remote sensing
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tasks. In contrast, DR-SCAN separates and fuses these features, providing a more flexible and
interpretable framework for SISR in remote sensing and geoscience.

2 METHODOLOGY

Let I;r € REOXHXW be the LR input and Iy € REX*H*aW be the HR ground truth, where C is
the number of channels, H, W are the spatial dimensions, and « is the scale factor. The goal is to

learn a function fy parameterized by 6, mapping I i to an estimate iyr~1Iyg. fo:1ppr — iz
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Figure 1: Proposed DR-SCAN architecture showing the dual-branch design: a shallow path with
residual attention blocks and a deep path with hierarchical residual groups each containing multiple
residual attention blocks.

The proposed DR-SCAN network (Figure |I[) consists of a shallow branch Sy and a deep branch
D,,, where the shallow branch extracts fine details (e.g. edges, textures), while the deep branch
captures global structures: Fghaiiow = S¢(Izr), Faeep = Dy(Irr). These features are com-
bined using a fusion operator F, yielding: Fiysea = F(Fshallow; Fdeep). The final HR image
is reconstructed using an upsampling module followed by a bicubic-upsampled skip connection:

15 r = Upsample(Fpuseq) + Bicubic(Izg).
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Figure 2: Schematic representation of the residual attention block incorporating the two attention
modules: channel attention for inter-channel dependencies via global average pooling and spatial
attention for spatial dependencies via concatenated average-max pooling operations.

Each branch consists of residual attention block (RABs) (Figure a)), where an input feature map

x € ROXH W' is refined to produce x using: x' = x + 7 - AttnConv(x), where ~ is a learnable
scaling factor, and AttnConv applies channel and spatial attention.

The channel attention (CA) (Figure |Zkb)), emphasizes what features are important. Unlike
CBAM (Woo et al., [2018)), which applies both average and max pooling, only global average pool-

ing (GAP) is used to reduce computational cost: F'9, = GlobalAvgPool(x), F(% € RC.
This is the passed through a multi-layer perceptron (MLP) with a reduction ratio r: w, =

o <W1 5(Wo Fg&)), where § is ReLLU activation function, o is sigmoid activation function, and

Wy € R7XC, W, € RO*T are learnable weights. The final channel-wise reweighting is applied
via: Xep = X O We.
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The spatial attention (SA) (Figure 2]c)), determines where features are important by first applying

average and max pooling across channels: Fgf,)g = AvgPool(x), Fi) = MaxPool(x). These

descriptors are then concatenated and passed through a convolution layer:

M;(x) = 0( kak([Fgf,)g; Ff{fgx])), where fj is a convolution layer of kernel size k x k. The

resulting spatial attention map is applied to the input feature map as: x5, = x © M(x)

The fused features from the shallow and the deep branches are then passed through an upsampling
module. A final convolutional layer and a skip connection using bicubic upsampling to stabalize

learning in deeper architectures to produce 1yp, thus completing the DR-SCAN methodology.

The UCMerced and DeepRock-SR datasets are used for remote sensing and geoscience experiments,
respectively. PSNR and SSIM are the evaluation metrics. Data augmentation includes
random rotations and flips. The network is trained using AdamW optimizer following a cosine
annealing schedule. All experiments are implemented in PyTorch and trained on NVIDIA A100
GPUs with batch sizes of 32/16.

3 RESULTS AND DISCUSSIONS

3.1 REMOTE SENSING - UCMERCED DATASET

Scale |  Bicubic SC SRCNN FSRCNN CNN-7 LGCNet DCM DRCM | DR-SCAN(Ours)
2 [30.76/0.8789 | 32.77/0.9166 | 32.84/0.9152 | 33.18/0.9196 | 33.15/0.9191 | 33.48/0.9235 | 33.65/0.9274 | 34.37/0.9296 |  35.07/0.9356
3 |27.46/0.7631 | 28.28/0.7971 | 28.66/0.8038 | 29.09/0.8167 | 29.02/0.8155 | 29.28/0.8238 | 29.52/0.8394 | 30.26/0.8507 |  30.81/0.8498
4 |25.65/0.6725 | 26.51/0.7152 | 26.78/0.7219 | 26.93/0.7267 | 26.86/0.7264 | 27.02/0.7333 | 27.22/0.7528 | 27.88/0.7707 |  27.86/0.7885

Table 1: Comparison of PSNR (dB)/ SSIM for different SR methods across various scaling factors.
Bold numbers indicate the highest values.

Table [T compares the performance of DR-SCAN with other SR methods by different scaling factors
using PSNR and SSIM metrics in the UCMerced dataset. DR-SCAN outperforms traditional meth-
ods like Bicubic and other CNN-based approaches and achieves the highest PSNR and competitive
SSIM scores, particularly for X2 and x3 scales. Figure[3]shows an example of a downscaled image
of x 4 and is SR output from DR-SCAN.

HR Ground Truth

LR Input SR Output

Figure 3: Example of qualitative analysis of DR-SCAN on x4 downscaled image from UCMerced
dataset. From left to right: LR input, SR output using DR-SCAN, and HR ground truth.

3.2 GEOSCIENCE - DEEPROCKSR

Method Year | Carbonate PSNR | Sandst PSNR | Carbonate SSIM | Sandstone SSIM
SRCNN 2014 31.4669 34.4151 0.8691 0.8684
EDSR 2017 31.5464 35.1065 0.8700 0.8697
SRResNet 2017 31.5086 34.9821 0.8694 0.8692
SwinIR-light 2021 31.5030 34.7320 0.8696 0.8689
MAN 2023 31.5519 35.1475 0.8701 0.8703
SAFMN 2023 30.2270 33.7771 0.8611 0.8575
MDBN 2024 31.5415 35.0539 0.8700 0.8696
TDFIF-Net 2023 31.5573 35.1636 0.8702 0.8703
DR-SCAN (Ours) | 2024 31.5093 35.0830 0.8693 0.8669

Table 2: Comparison on Carbonate2D and Sandstone2D datasets for scales x2 (Zhang et al., [2024).
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Comparing different SR on the DeepRock-SR dataset in Table 2] DR-SCAN shows competitive
performance for both carbonate and sandstone samples. The minimal performance differences (=0.1
dB) among recent methods indicate that current DL approaches have likely reached near-optimal
performance for x2 SR.
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Figure 4: Visual comparison of SR results on a carbonate microstructure image. From left to right:
LR input, SR output using DR-SCAN, and HR ground truth.
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3.3 INTERPRETABILITY VIA DUAL-BRANCH FEATURE MAPS

To illustrate where each branch has the highest activation, the final outputs of both branches and
compute the average across the channel dimension is extracted. Given a batch of feature maps
F € RBXCXHXW “where B is the batch size, C' is the number of channels, and H, W are the

spatial dimensions, the average branch activation is computed as: AvgMap(F') = é Zle F(e),

The shallow and deep branch activations, along with their differences, are then plotted. These plots
for two sample outputs from the test set are shown in Figure 5]
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Figure 5: Visualization of feature map difference showing deep vs shallow branch activations: (Left)
UC Merced dataset; (Right) DeepRockSR dataset showing each branch feature maps and their dif-
ference map.

These visualizations offer interpretability by revealing how the network learns both local features
(edges) and higher-level structure within the same network. In Figure[5area under red color suggest
the deep branch has the highest activation, whereas blue colored area around the edges indicate
regions dominated by shallow branch activations. Thus, the dual-branch framework provides a more

transparent view of the reconstruction process and reinforces the architectural design rationale for
SISR.

4 CONCLUSION

In this paper DR-SCAN, a dual-branch network for SISR was introduced. Our quantitative eval-
uations and visual comparisons demonstrate that DR-SCAN performs competitively against state-
of-the-art methods. Through feature visualization, the dual branches split their focus between fine
details and structural elements, validating our architectural design. Future work includes dynamic
weighting of each branch in the DR-SCAN architecture so that one can adaptively balance the contri-
butions of fine-detail enhancement and structural reconstruction based on image content, potentially
improving performance across diverse datasets and applications.



ICLR 2025 Machine Learning for Remote Sensing (ML4RS) Workshop

5 ACKNOWLEDGEMENTS

This work has been supported by the Industrial Graduate School Collaborative Al and Robotics
funded by the Swedish Knowledge Foundation Dnr:20190128 and in collaboration with the indus-
trial partner Orexplore Technologies.

REFERENCES

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional
network for image super-resolution. In Computer Vision—-ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV, pp. 184—199. Springer
International Publishing, 2014.

Shichao Jin, Yanjun Su, Shang Gao, Fangfang Wu, Qin Ma, Kexin Xu, Tianyu Hu, Jin Liu, Shuxin
Pang, Hongcan Guan, et al. Separating the structural components of maize for field phenotyp-
ing using terrestrial lidar data and deep convolutional neural networks. IEEE Transactions on
Geoscience and Remote Sensing, 58(4):2644-2658, 2019.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1646-1654, 2016.

Fred A Kruse, Joseph W Boardman, and Jonathan F Huntington. Comparison of airborne hyperspec-
tral data and eo-1 hyperion for mineral mapping. IEEE transactions on Geoscience and Remote
Sensing, 41(6):1388-1400, 2003.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic single image super-resolution using a
generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4681-4690, 2017.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep resid-
ual networks for single image super-resolution. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pp. 136—144, 2017.

Compton J Tucker and John RG Townshend. Strategies for monitoring tropical deforestation using
satellite data. International Journal of Remote Sensing, 21(6-7):1461-1471, 2000.

Peijuan Wang, Bulent Bayram, and Elif Sertel. A comprehensive review on deep learning based
remote sensing image super-resolution methods. Earth-Science Reviews, 232:104110, 2022.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen
Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings
of the European conference on computer vision (ECCV) workshops, pp. 0-0, 2018.

Ying Da Wang, Ryan T Armstrong, and Peyman Mostaghimi. Boosting resolution and recovering
texture of 2d and 3d micro-ct images with deep learning. Water Resources Research, 56(1):
€2019WR026052, 2020.

Z Wang. Image quality assessment: Form error visibility to structural similarity. IEEE Trans. Image
Process., 13(4):604-606, 2004.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European conference on computer vision (ECCV), pp.
3-19, 2018.

Yubo Zhang, Chao Han, Lei Xu, Junhao Bi, Haihua Kong, and Haibin Xiang. Tdfif-net: Two-
dimensional feature interaction fusion network for digital core images. SSRN, 2024.

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Image super-resolution using
very deep residual channel attention networks. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 286-301, 2018.



	Introduction
	Methodology
	Results and Discussions
	Remote Sensing - UCMerced dataset
	Geoscience - DeepRockSR
	Interpretability via Dual-Branch Feature Maps

	Conclusion
	Acknowledgements

