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ABSTRACT

Oil Spill Detection (OSD) in remote sensing images is commonly viewed as a
semantic segmentation task. However, due to the small proportion of oil spill
area within images, existing OSD datasets tend to be class-unbalanced, posing
significant challenges for convolutional neural network (CNN)-based segmenta-
tion models with limited receptive fields. In this study, we introduce OSDMamba,
which is the first Mamba-based architecture specifically designed for oil spill de-
tection. Compared to CNN, OSDMamba leverages Mamba’s selective scanning
mechanism to effectively expand the model’s receptive field while preserving crit-
ical details. To further enhance performance, we propose an asymmetric decoder
that integrates state-space modelling and deep supervision, improving multi-scale
feature fusion and increasing sensitivity to minority-class samples. In our exper-
iments, the proposed OSDMamba achieves state-of-the-art performance, outper-
forming CNN-based models with improvements of 8.9% and 11.8% in terms of
mIoU across two OSD datasets, demonstrating its effectiveness. Our code will
be available to the public at https://github.com/Chenshuaiyu1120/
Oil-Spill-detection.

1 INTRODUCTION

Marine oil spills, caused by drilling blowouts Bentz (1976), pipeline leaks Doerffer (2013), and
tanker spills Al-Ruzouq et al. (2020), threaten marine ecosystems. Effective detection is crucial for
mitigation Solberg et al. (2007). Advances in synthetic aperture radar (SAR) and sensors provide
vast earth observation data, enabling deep learning-based solutions Satyanarayana & Dhali (2023).
Convolutional Neural Networks (CNN) based approaches Ronneberger et al. (2015b) have shown
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Figure 1: The distribution of semantic classes in
the M4D Dataset and MADOS Dataset.

Figure 2: Comparison of receptive fields between
convolution and 2D selective scan used in OSD-
Mamba.
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Figure 3: Architectural overview of OSDMamba.

promising performance in oil spill detection, outperforming traditional threshold and machine learn-
ing methods Fiscella et al. (2000).

Despite the recent success, there remain two key challenges that affect detection performance: class
imbalance and limited receptive fields of convolution. Oil spill incidents are rare, resulting in a
limited number of available image samples Brekke & Solberg (2005). In these images, oil spills
occupy only a small portion of the scene, leading to a significant class imbalance between the sea
surface and oil spill regions, as shown in Figure 1. Additionally, convolution-based models have
limited receptive fields. When the receptive field is small, the model may fail to capture global
information and the contextual relationships of the target, leading to misclassification or complete
omission of small objects, as shown in Figure 2.

Recently, state-space models (SSMs), such as the Mamba models Gu & Dao (2023), have shown
promise in addressing various imaging tasks Ruan & Xiang (2024). Mamba excels at capturing
long-range dependencies and extracting meaningful features at both local and global scales, lever-
aging bidirectional scanning and large convolutional kernels for enhanced performance. In this
paper, we study the effectiveness of Mamba models to the above challenges of oil spill detection. To
achieve this, we propose the first Mamba-based architecture tailored for detecting oil spills, called
OSDMamba, as shown in Figure 3. By leveraging Mamba’s sliding window mechanism for local
self-attention, it ensures the dependence of information in each local region, helping the model more
accurately learn minority class features in imbalanced datasets Zhu et al. (2024). Additionally, we
develop an asymmetric decoder with ConvSSM Smith et al. (2024) and deep supervision Liu et al.
(2024) for more effective feature fusion at multiple scales. By combining convolution operations
with SSM, the model preserves global state information while extracting local features, enhancing
feature representations in complex scenarios. Experimental results show that the proposed OSD-
Mamba achieves state-of-the-art performance, yielding mIoU improvements of 8.9% and 11.8% in
oil spill detection across two publicly available datasets.

2 METHODOLOGY

Figure 3 illustrates our proposed OSDMamba. A SAR image is first divided into small patches using
a Patch Embedding technique. These patches are transformed into a linear embedding sequence,
which is further processed through Visual State Space (VSS) Blocks with a configuration of {2, 2, 9,
2} Zhu et al. (2024). Features with downsampling rates of {4, 8, 16}, generated at the corresponding
three stages, are transferred to the decoder for upsampling. We employ an asymmetric decoder
structure, where ConvSSM modules are applied in the first two stages to achieve spatial feature
fusion.

Encoder We based the OSDMamba encoder on design principles from VMamba-Tiny Zhu et al.
(2024) and Swin-UMamba Liu et al. (2024). Similar to Swin-UMamba, OSDMamba performs 2×
downsampling at each stage to preserve low-level details. The later stages follow a similar design
of VMamba-Tiny, with 2, 2, 9, and 2 VSS blocks in stages 1 to 4, respectively. This configuration
balances model depth and efficiency, allowing for robust feature extraction across multiple scales.
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Table 1: The quantitative performance comparison and ablation experiments of the proposed method
(on M4D Dataset).

Model SeaSurface(%, ↑) Oil Spill(%, ↑) Look-alike(%, ↑) Ship(%, ↑) Land(%, ↑) mIoU(%, ↑)

Unet Ronneberger et al. (2015a) 93.90 53.79 39.55 44.93 92.68 64.97
LinkNet Chaurasia & Culurciello (2017) 94.99 51.53 43.24 40.23 93.97 64.79

PSPNet Zhao et al. (2017) 92.78 40.10 33.79 24.42 86.90 55.60
Deeplabv2 Chen et al. (2017) 94.09 25.57 40.30 11.41 74.99 49.27

Deeplabv2(msc) Chen et al. (2017) 95.39 49.28 31.26 88.65 93.97 62.83
Deeplabv3+ Chen et al. (2018) 96.43 53.38 55.40 27.63 92.44 65.06

YOLOv8-SAM Wu et al. (2024) 94.34 41.84 48.15 52.48 87.65 64.89
SAM-OIL Wu et al. (2024) 96.05 51.60 55.60 52.55 91.81 69.52

OSDMamba without Decoder 95.60 64.76 46.30 50.32 92.07 67.60
OSDMamba without Deep Supervision 95.50 65.97 53.61 43.20 91.93 69.01

OSDMamba (ours) 96.47 65.59 47.57 46.85 94.76 70.25

Additionally, both the VSS blocks and patch merging layers can be initialized with ImageNet Deng
et al. (2009) pre-trained weights to enhance performance and accelerate convergence.

Convolutional State Space Model ConvSSM combines convolution and state-space modelling to
extract spatial features and capture spatiotemporal dependencies, enabling efficient and accurate fea-
ture extraction and fusion in complex scenarios. Below is a detailed derivation of the method: Con-
sider a continuous tensor-valued input U(t) ∈ RH′×W ′×U with height H ′, width W ′, and the num-
ber of input features U . We define a continuous-time, linear convolutional state space model (Con-
vSSM) with state X(t) ∈ RH×W×P , derivative X′(t) ∈ RH×W×P , and output Y(t) ∈ RH×W×U ,
using the differential equations:

X′(t) = A ∗X(t) +B ∗U(t) (1)

Y(t) = C ∗X(t) +D ∗U(t) (2)
where ∗ denotes the convolution operator, A ∈ RP×P×kA×kA is the state kernel, B ∈
RP×U×kB×kB is the input kernel, C ∈ RU×P×kC×kC is the output kernel, and D ∈ RU×U×kD×kD

is the feedthrough kernel. For simplicity, we pad the convolution to ensure the same spatial resolu-
tion, H×W , is maintained in the states and outputs. The definition of the discrete-time convolutional
state space model is similar to the above steps.

Decoder Although existing decoders Liu et al. (2021) can effectively retain both fine details and
global contextual information, additional strategies are necessary to further enhance model perfor-
mance, particularly when addressing highly imbalanced class distributions. To tackle this challenge,
we implemented a locally asymmetric decoder structure and designed two distinct types of upsam-
pling blocks tailored for different stages of the decoding process. In the context of marine oil spill
detection tasks, early-stage upsampling blocks play a critical role in preserving substantial local
information Fiscella et al. (2000). Accurately capturing and analysing this local information is es-
sential for detecting small targets and subtle features within SAR images.

To optimize this, we integrated the VSS Block and ConvSSM in stages 1 and 2 of the decoder, as
shown in Fig. 3. The VSS Block ensures the preservation of spatial boundaries and minority class
features, while ConvSSM’s self-attention mechanism enhances global context awareness. Simul-
taneously, its convolutional layers focus on local feature extraction, improving the fusion of both
global and local features for enhanced detection outcomes. For the third and fourth decoder lay-
ers, we adopted a more streamlined approach by employing patch expansion and incorporating two
VSS blocks as the upsampling components. Such a combination of locally asymmetric design and
tailored upsampling strategies can enhance the model’s ability to detect oil spills, particularly in
scenarios with imbalanced datasets and small target regions. To enhance the model’s multi-level
feature representation capability, we employed a deep supervision module Liu et al. (2024) by
applying 1× 1 convolution mapping to the decoder layers with sizes of 1/4, 1/8, and 1/16.

3 EXPERIMENTS

We use the M4D dataset Krestenitis et al. (2019) and the MADOS dataset Kikaki et al. (2024)
for evaluation. The proposed OSDMamba model was implemented using PyTorch on an NVIDIA
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Table 2: Quantitative comparison of OSD-
Mamba on the MADOS dataset.

Model F1(%, ↑) mIoU(%, ↑) OA(%, ↑)

RF Breiman (2001) 56.6 43.9 67.1
RF++ Karpievitch et al. 64.4 52.4 83.8
U-Net Ronneberger et al. (2015a) 63.8 51.0 82.9
SegNext Guo et al. (2022) 60.6 49.2 86.6
MariNeXt (reproduced)Kikaki et al. (2024) 70.6 59.2 81.6
OSDMamba (ours) 71.2 68.1 82.3

Table 3: Comparison of false positives be-
tween the baseline and OSDMamba on the
MADOS dataset.

Model Oil Spill FP(%, ↓) Overall FP(%, ↓)

Baseline (U-Net) 37.2 43.5
OSDMamba 32.4 35.8

L40 GPU, following the training strategy outlined in Satyanarayana & Dhali (2023). We trained the
OSDMamba model using a hybrid loss function, as given by L = −αt(1−pt)

γ log(pt)+(1− |A∩B|
|A∪B| )

where αt is the class weight, used to balance class imbalance; Pt is the predicted probability of the
true class by the model; γ is a modulation factor used to adjust the weight of hard and easy samples;
A is the predicted positive region; B is the ground truth positive region. We utilized the AdamW
optimizer Loshchilov (2017) with an initial learning rate of 0.01 and a weight decay of 0.0001. The
model was initialized with pre-trained weights from ImageNet Deng et al. (2009). A batch size of 4
was used, and the model was trained for 100 epochs across all stages.

Table 1 presents a quantitative comparison of OSDMamba against other methods on the M4D
dataset. Overall, OSDMamba achieves a mIoU of 70.25%, outperforming all other models in the
comparison. This result highlights OSDMamba’s superior ability to detect marine oil spills with
enhanced generalization performance. Notably, OSDMamba delivers the best performance in the
oil spill category, achieving a 12.18% improvement over the second-best model, U-Net. This sig-
nificant gain indicates OSDMamba’s capability to effectively learn from underrepresented classes
in imbalanced datasets. Furthermore, OSDMamba also achieves top performance in detecting Sea
Surface and Land, demonstrating its robustness across multiple categories. Table 2 provides detailed
results on the MADOS dataset. Here, OSDMamba again surpasses all competing methods, with an
improvement of 0.6% in F1-score and 8.9% in mIoU. These consistent improvements across differ-
ent datasets confirm OSDMamba’s ability to deliver reliable and accurate detection performance in
various scenarios.

We also conducted an ablation study to evaluate the impact of each component of OSDMamba on
overall performance, as shown in the last three rows of Table 1. OSDMamba without our decoder
achieves a mIoU of 67.62%, demonstrating that the lack of multi-scale feature fusion negatively
impacts performance, particularly in key categories like Oil Spill and Ship. OSDMamba without
deep supervision reaches a mIoU of 65.85%, further highlighting the role of deep supervision in
guiding feature learning and improving accuracy, as shown by the reduced performance in categories
such as Oil Spill (64.79%) and Ship (43.00%). In contrast, OSDMamba (ours) achieves the best
performance, with a mIoU of 70.25%, demonstrating superior segmentation across key categories
like Oil Spill (65.59%) and Ship (46.85%). The corresponding qualitative analysis is provided in the
appendix.

To highlight how our method addresses the two previously mentioned challenges, we present the
false positive (FP) statistics both within the oil spill areas and overall, in Table 3. Compared to the
baseline method, our approach significantly reduces the number of false positives (FP) within oil
spill areas, i.e., the minority class. This reduction indicates that our method effectively mitigates
the bias associated with class imbalance. Similarly, the overall FPs are significantly reduced by our
approach, demonstrating its strength in minimizing misclassifications at both local and global scales
and thereby ensuring more accurate and reliable detection outcomes.

4 CONCLUSION

In this paper, we presented a Mamba-based image segmentation framework for marine oil spill
detection. By stacking VSS Blocks, the model is better able to distinguish limited samples. Addi-
tionally, we designed an asymmetric decoder and integrated ConvSSM into specific decoder layers
to enhance feature fusion. Extensive experiments demonstrate that our model achieves state-of-the-
art segmentation performance on two oil spill detection datasets. We believe that our design using
the Mamba architecture offers a new perspective for marine oil spill detection tasks.
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Figure 4: Qualitative analysis of ablation experiments

A APPENDIX

A.1 DATASETS

The Oil Spill Detection Dataset Krestenitis et al. (2019) was used in this study, including 1002
training SAR images and 110 testing images. The dataset consists of five semantic categories: sea
surface, oil spill, oil spill look-alike, ship, and land. The images in the dataset have dimensions of
1250 × 650 pixels.

The MADOS (Marine Debris and Oil Spill) dataset Kikaki et al. (2024) is a globally distributed
benchmark designed for detecting marine pollution, including oil spills and debris. It consists of
174 high-resolution multispectral Sentinel-2 satellite images collected between 2015 and 2022, with
approximately 1.5 million labelled pixels spanning 15 thematic categories.

A.2 QUALITATIVE ANALYSIS

As shown in Figure 4, the qualitative analysis visualises the contributions of each module through
a column-wise comparison. Using the CNN decoder, the model struggles with segmenting small or
ambiguous regions, such as isolated oil spills and look-alike areas (e.g., third columns). Our decoder
improves the segmentation of minority classes, particularly for oil spills and ships (e.g., 5th column),
but some regions remain under-segmented or misclassified, leading to a moderate mIoU of 69.01%.
The complete OSDMamba achieves the best segmentation, accurately capturing fine details and
distinguishing small-scale targets, as depicted in the 5th column of Fig. 4. These results demonstrate
the decoder’s effectiveness in multi-scale feature fusion and the critical role in guiding the model to
better handle class imbalance and small-scale features by introducing multi-level supervision signals
in intermediate layers, enhancing the learning of small-scale features.

7


	Introduction
	Methodology
	Experiments
	Conclusion
	APPENDIX
	Datasets
	Qualitative Analysis


