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ABSTRACT

Identifying landslides from remote imagery is critical for rapid responses after
landslide hazards and for assessing their environmental impacts. Existing datasets
for landslide detection models are mostly based on multi-sourced, high-resolution
(e.g., 1-5 m) satellite imagery from commercial companies (e.g., Planet Labs) and
ultra-high-resolution (e.g., <1m) photos from unmanned aerial vehicle (UAV) sur-
veys. However, obtaining those data is often economically expensive and labor-
intensive, limiting their applicability. Here we present ‘LandsatQuake,’ a bench-
mark dataset composed of 31 landslide inventories from 21 earthquake-prone re-
gions across the world covering a total area of 5.56 × 107 km2 and spanning the
last 40 years. This dataset emphasizes practicality by using satellite images ac-
quired by Landsat, the only satellite system that has recorded Earth’s land surface
for >40 years. The public availability, high coverage of the world, and longevity
make the Landsat data ideal for developing historical and recent landslide inven-
tories caused by known triggers (e.g., earthquakes or rainstorms). Additionally,
we demonstrate the challenges of applying existing computer vision algorithms to
practical landslide detection problems by evaluating several baselines. The pro-
cessing codes and dataset are publicly available at GitHub and Hugging Face,
respectively.

1 INTRODUCTION

Landslides represent a severe natural hazard. In the United States, landslides are estimated to cause
25-50 deaths annually and more than one billion dollars in damages (Froude & Petley, 2018; Schus-
ter & Highland, 2001). Most high-quality landslide inventories, which are critical for assessing
damage, are produced from manual mapping, which is labor intensive and time consuming (Galli
et al., 2008). We still lack ready open-source algorithms that allow efficient and rapid mapping of
landslides after catastrophic landslide-triggering events. Automated landslide detection using ma-
chine learning is a rapidly growing field and provides a much faster alternative to manual mapping
(Milledge et al., 2021).

Studies have shown that, in comparison to traditional machine learning methods, deep learning tech-
niques can achieve superior performance when handling large-scale remote sensing data (qiang Yang
et al., 2024). Although there have been various attempts to provide new architectures and techniques
for landslide detection ((Ghorbanzadeh et al., 2019), (Su et al., 2021), Ullo et al. (2020)), most of
these focus only on specific regions and fail to generalize to a broader distribution of satellite images
or regions. In addition, current landslide detection models mainly rely on high-resolution imagery,
which only cover recent time spans and are expensive. Additionally, current landslide detection
models are unable to separate amalgamated landslides, which heavily skews volume calculations
and gives an inaccurate estimate of landslide hazard magnitudes (Larsen et al., 2010). To address
these challenges, we present LandsatQuake (LQ), which offers:

• Broad coverage and historical depth: four decades of Landsat imagery across 21
earthquake-prone mountain ranges spanning 5.56× 107 km2.
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Figure 1: Map showing locations of all landslide inventories path of LandsatQuake

• Practical relevance: moderate 30 m resolution suitable for large, deep-seated landslides.

• Integration with DEM data: slope-based enhancements for improved detection.

• Cost-effective and accessible data: open-source, no licensing constraints.

2 DATASETS

In recent years, efforts have focused on developing benchmark datasets for landslide detection,
exemplified by three recent contributions: (A) CAS Landslide Dataset, which uses multi-sensor
RGB images (5 m or finer) and UAV drone surveys with polygons from open-source repositories
(Xu et al., 2024); (B) Landslide4Sense, a competition dataset integrating 14 bands from Sentinel-
2A and DEM/slope layers from ALOS (Ghorbanzadeh et al., 2022); and (C) HR-GLDD, a global
dataset composed of 3 m PlanetScope imagery (RGB + NIR) covering various landslide triggers
(Meena et al., 2023). While these datasets provide high-resolution (<10 m) images mostly from
2015 onward, they often lack global distribution and omit topographic information, limiting their
applicability to moderate-resolution imagery and ignoring the valuable slope/elevation context cru-
cial for capturing real-world landslide patterns (Guzzetti et al., 2012).

2.1 LANDSATQUAKE DATASET CONSTRUCTION

Satellite imagery for LandsatQuake was acquired from EarthExplorer (usg), focusing on scenes
within ±2 years of each earthquake event, with less than 20% cloud cover. Downloaded images
spanned approximately 2◦ × 2◦ in local UTM coordinate zones, drawing from Landsat 4, 5, and
8 missions at 30 m ground resolution. Landsat 7 was excluded due to its faulty scan line correc-
tor (Storey et al., 2003). Landsat 4 and 5 images were formatted at 8-bit, while Landsat 8 was
provided at 16-bit and subsequently converted to 8-bit to maintain consistency. Digital elevation
model (DEM) data were sourced from the ALOS Global Digital Surface Model (?), downloaded in
1◦ × 1◦ tiles at 30 m resolution. These DEM tiles were re-projected from EPSG 4326 to local UTM
coordinate zones.

The LandsatQuake dataset itself incorporates 31 landslide inventories from 21 major earthquake-
impacted mountain regions (Table 1), including polygons from the USGS earthquake-triggered land-
slide repository and prior studies (Marc et al., 2016; Schmitt et al., 2017; Li et al., 2022a). Given the
30 m resolution of Landsat, landslides under 10,000 m2 were excluded because they are too small
for reliable detection, and larger, deep-seated failures have greater geomorphic and socioeconomic
impacts. Data processing involved mosaicking DEM tiles, compositing Landsat bands into multi-
band images, and overlaying the landslide boundaries before segmenting the data into patches of
224 × 224 pixels. We then eliminated patches containing artifacts or high cloud cover, ensuring
high-quality samples for model training.

In total, we included six Landsat reflectance bands (1, 2, 3, 4, 5, and 7), omitting the thermal band (6)
due to its unavailability in Landsat 4 and 5. Natural-color (RGB) images were created by assigning
band 3 to the red channel, band 2 to green, and band 1 to blue. Each RGB image underwent a contrast
stretch to enhance visibility, followed by a slight intensity dampening (Figure 2). Afterwards, we
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appended near-infrared (band 4), shortwave infrared (bands 5 and 7), the DEM, and a slope map
(derived from the DEM) as additional channels, leveraging the known importance of topography for
landslide detection (Guzzetti et al., 2012).

3 EXPERIMENTS

Experts: Identifying and quantifying every factor influencing landslide detection in satellite im-
agery can be both challenging and impractical. To circumvent this abstraction, we directly engaged
experts by presenting them with both raw and annotated images, ensuring that any key challenges
are reflected in the feedback provided. Specifically, we randomly sampled 100 images each from
L4S, CAS, and LandsatQuake, annotated them using reference labels, then asked three experts to
rate the ease of identifying landslides (1 = hardest/most likely to miss, 10 = easiest/most likely to
detect).

As summarized in Table 1, LandsatQuake images received noticeably lower scores, highlighting
the increased difficulty of detecting landslides using open-source Landsat data compared to higher-
resolution imagery in existing datasets. This highlights the challenges associated with using open-
source Landsat imagery for landslide detection in contrast to high-resolution images from previous
deep learning-based datasets.

Score Expert A Expert B Expert C Average
CAS 5.61 7.60 6.03 6.41
Landslide4Sense 6.9 8.39 4.78 6.69
LandsatQuake 2.0 1.81 1.12 1.64

Table 1: Scores of three GeoScience experts and the average scores for each dataset

Models: Acknowledging the difficulty in detecting landslides from Landsat imagery, we measured
the performance of various existing computer vision models to assess how current CV methods
struggle with realistic, moderate-resolution datasets such as LandsatQuake.

Model (Backbone) mAP (Average) mAP @ 50% IoU (mAP50)
ConvNeXt Small (Liu et al., 2022) 0.000018 0.000090
ConvNeXt Tiny (Liu et al., 2022) 0.000064 0.000319
EfficientNet (Tan & Le, 2020) 0.000081 0.000202
Darknet (Redmon, 2013–2016) 0.000990 0.004950
ResNet18 (He et al., 2015) 0.000021 0.000140
ResNet50 FPN (He et al., 2015) 0.002975 0.010006
ResNet101 (He et al., 2015) 0.000033 0.000083
ResNet152 (He et al., 2015) 0.000024 0.000066
SqueezeNet 1.0 (Iandola et al., 2016) 0.000073 0.000163
SqueezeNet 1.1 (Iandola et al., 2016) 0.000043 0.000163
Swin (Liu et al., 2021b) 0.000040 0.000146
ViTDet Tiny (Li et al., 2022b) 0.000017 0.000086
ViTDet (Li et al., 2022b) 0.000043 0.000143

Table 2: Comparison of mAP scores for Faster R-CNN with different backbones evaluated on LQ.

To quantify these challenges, we trained Faster R-CNN (Ren et al., 2016) object detection models
using PyTorch with various feature-extracting backbones. The dataset was prepared by segregating
images and labels into training, validation, and test datasets with a split of 80%, 10%, and 10%,
respectively, with data configurations loaded from YAML files. Since our data is very different in
distribution from most standard pre-training datasets such as ImageNet (Krizhevsky et al., 2012) or
Common Objects in Context (Lin et al., 2015), we evaluated our models by using backbones trained
from scratch. We chose a batch size of 8 and 20 training epochs across all different configurations
(backbones), and optimization was performed using the Stochastic Gradient Descent (SGD) (LeCun
et al., 1998) optimizer with momentum 0.9 and a learning rate of 0.001. Model performance was
evaluated based on mean Average Precision (mAP) at different Intersection-over-Union (IoU) (Ev-
eringham et al., 2010) thresholds (specifically from 0.5 to 0.95 in steps of 0.05), and models were
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saved according to the best validation mAP observed. We have reported the mAP average and mAP
@ IoU=50 values for various transformer-based and convolution-based backbones in Table 3.

The results show that traditional computer vision models, which are optimized and improved iter-
atively for standard deep learning benchmarks, perform poorly on LandsatQuake. Thus, applying
existing models to Landsat-based data remains challenging.

Effect of Extra Spectral Bands: All experiments so far have used only RGB bands to ensure
consistent evaluation across different satellite sources and alignment with models typically designed
for RGB inputs. In this section, we explore the benefits of adding Landsat Bands 4 (NIR), 5 (SWIR
1), and 7 (SWIR 2) by training a Faster R-CNN model (ResNet-50 backbone) modified for six input
channels. We trained for 20 epochs with an Adam (Kingma & Ba, 2017) optimizer (learning rate
= 0.0005, weight decay enabled), employing a ReduceLROnPlateau scheduler (patience = 5, factor
= 0.1) and custom normalization (mean = 0.0, std = 1.0). We initially masked the additional three
channels and then progressively unmasked them to gauge their impact on mAP.

#Bands mAP (Average) mAP @ 50% IoU (mAP50)
3 bands 0.0009197 0.003822
4 bands 0.0010123 0.001817
5 bands 0.0077761 0.022527
6 bands 0.0053710 0.012381
DEM (8 bands) 0.0034852 0.034486

Table 3: Comparison of Faster R-CNN (ResNet-50) with different number of input bands.

Given the known utility of DEM and slope for landslide detection (Guzzetti et al., 2012; Wang et al.,
2021), we appended these as seventh and eighth input channels for a parallel experiment. As shown
in Table 4, while the overall mAP average is not always higher, the mAP at 50% IoU improves with
each added band, indicating that DEM and slope in particular provide valuable ancillary information
for more accurate landslide detection.

4 LIMITATIONS, FUTURE WORK, AND CONCLUSION

First, due to the dataset’s complexity, most out-of-the-box computer vision models struggle to learn
effectively from LandsatQuake. This difficulty hampers the ability to conduct analysis of learned
models (Grün et al., 2016) for insights, making it challenging to understand the models and visualize
the internal representation of features.

Second, despite improvements in data quality and satellite technology over time, our dataset relies
on shapefiles for incidents from various years in the past. Consequently, the only available source
of satellite images for those old events is often Landsat (which is open-source and has a timespan
of over 40 years (Wulder et al., 2022)), either due to licensing restrictions or because it is the sole
source available for older events.

Third, the continuing evolution of satellite technology (García-Arenal & Fraile, 2017) makes it
challenging to provide a universal format that can integrate our Landsat-based dataset with those
using images from other sources.

Finally, although the inclusion of DEM bands improves performance, the typical mAP scores for
small object detection problems (Liu et al., 2021a) and sparse datasets, including those in aerial
imagery (Koyun et al., 2022), can be up to an order of magnitude higher. This emphasizes the need
for more specific methods for landslide detection.

In conclusion, we present LandsatQuake, a large-scale dataset for landslide detection that covers
21 landslide-active regions and 31 landslide inventories spanning the last 40 years. By leveraging
open-access Landsat imagery, this dataset provides historical data from multiple global locations,
mirroring real-world conditions where high-resolution data are not always available. Our evalua-
tions with standard computer vision models demonstrate that existing methods underperform in this
setting, highlighting the need for targeted approaches. This initiative underlines the importance of
methodologies and datasets that not only optimize traditional performance metrics but also address
practical and realistic challenges in landslide detection.
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