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ABSTRACT

Object detection in satellite-borne Synthetic Aperture Radar (SAR) imagery holds
immense potential in tasks such as urban monitoring and disaster response. How-
ever, the inherent complexities of SAR data and the scarcity of annotations present
significant challenges in the advancement of object detection in this domain. No-
tably, the detection of small objects in satellite-borne SAR images poses a partic-
ularly intricate problem, because of the technology’s relatively low spatial resolu-
tion and inherent noise. Furthermore, the lack of large labelled SAR datasets hin-
ders the development of supervised deep learning-based object detection models.
In this paper, we introduce TRANSAR, a novel self-supervised end-to-end vision
transformer-based SAR object detection model that incorporates masked image
pre-training on an unlabeled SAR image dataset that spans more than 25, 700 km?
ground area. Unlike traditional object detection formulation, our approach capi-
talises on auxiliary binary semantic segmentation, designed to segregate objects of
interest during the post-tuning, especially the smaller ones, from the background.
In addition, to address the innate class imbalance due to the disproportion of the
object to the image size, we introduce an adaptive sampling scheduler that dy-
namically adjusts the target class distribution during training based on curriculum
learning and model feedback. This approach allows us to outperform conven-
tional supervised architecture such as DeepLabv3 or UNet, and state-of-the-art
self-supervised learning-based arhitectures such as DPT, SegFormer or UperNet,
as shown by extensive evaluations on benchmark SAR datasets.

1 INTRODUCTION

Recent advances in self-supervised learning (SSL) have significantly improved computer vision (He
et al., [2022; |Bao et al., 2022) and remote sensing (Toker et al., 2022; |Shermeyer et al., 2020 [Tuia
et al.| 2024), enabling the extraction of high-level representations from unlabelled data. SSL frame-
works typically involve pretraining using contrastive learning (Chen et al., 2020) or masked image
modelling (MIM) (He et al.l 2022), followed by fine-tuning on tasks such as object detection and
segmentation (Scheibenreif et al.| 2022} Zorzi et al.| 2022)).

Synthetic Aperture Radar (SAR) is widely used in environmental monitoring (Bountos et al., [2022)),
disaster management (Shermeyer et al., [2020), and military surveillance (Moreira et al., 2013). Its
unique ability to operate in all weather conditions and independent of external illumination makes
it invaluable for remote sensing. However, SAR imagery presents challenges such as speckle noise,
geometric distortions, and low resolution, particularly for small objects like vehicles, which are
often represented by only a few pixels (Zhu et al.| 2021). These challenges are compounded by the
severe class imbalance in SAR imagery and the scarcity of annotated datasets due to the high cost
and expertise required for labeling.

While SSL techniques have been adapted for remote sensing tasks like land cover segmenta-
tion (Scheibenreif et al. [2022) and change detection (Mall et al., 2023a), SAR object detection
remains underexplored. Vision transformers (ViTs) (Dosovitskiy et al.,|2021) have proven effective
for SSL with segmentation (Jain et al., 2023) and MIM (Bao et al.l [2022), but SAR-specific chal-
lenges like class imbalance are not fully addressed. Traditional sampling approaches in SAR object
detection, such as offline hard-negative mining (Hughes et al., [2018) and oversampling, often lead
to overfitting or fail to generalize well due to the severe class imbalance. While adaptive learning
strategies like curriculum learning (Huang et al.|[2020) and the small-loss criterion (Mit, 2024; Jiang
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Figure 1: The proposed SSL SAR object detection pipeline with adaptive sampling. Adaptive sam-
pling balances foreground and background in each batch, guided by prediction performance. The
vision transformer processes image patches, embedding them with positional encoding. Lightweight
prediction heads handle object map predictions during pretraining and reconstruction during fine-
tuning.
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et al., 2018)) have demonstrated effectiveness in handling imbalanced datasets, their application in
SAR remains limited. Recent work in remote sensing foundation and vision-langugage models,
such as GeoPixel (Shabbir et al.,|[2025), GRAFT (Mall et al., 2023b) and GeoChat (Kuckreja et al.,
2024), have highlighted the potential of large-scale pretraining for geospatial tasks (Danish et al.,
2024). However, these models primarily focus on optical imagery, their expansion to SAR remains
an open challenge, reinforcing the need for SAR-specific self-supervised approaches.

This paper introduces TRANSAR, a vision transformer model for SAR object detection based on
SSL. TRANSAR addresses class imbalance with a novel adaptive sampling scheduler and incor-
porates an SSL-MIM phase tailored for SAR representation learning. Additionally, we introduce
an auxiliary semantic segmentation-based method process to enhance small-object detection dur-
ing post-training. Our experiments demonstrate that TRANSAR outperforms architectures like
DeepLabv3 (Chen et al., [2017), DPT (Ranftl et al., 2021), and SegFormer (Xie et al., 2021), es-
tablishing its effectiveness for SAR object detection.

2  METHOD

TRANSAR is a transformer-based SAR object detection model that combines SSL-MIM pretrain-
ing; supervised auxiliary binary semantic segmentation to segregate small objects; and an adaptive
sampling scheduler to address class imbalance.

2.1 ARCHITECTURE AND TRAINING

TRANSAR architecture builds on ViTs with Swin transformers’ shifted window approach(Liu et al.,
2021)) for scale invariance and efficiency. The encoder backbone includes four blocks, each combin-
ing a patch merging layer and Swin transformer blocks with multi-head self-attention and residual
post-normalization (Liu et al., |2022a)). The architecture scales by adjusting dimensionality, pool-
ing layers, and patch embeddings. For SSL-MIM pretraining, we use a CNN-based pixel-shuffling
lightweight reconstruction head (Liu et al.l [2021) with block-wise masking (Bao et al.l [2022), en-
abling the model to learn SAR intensity patterns without relying on pixel interpolation.

During fine-tuning, the MIM head is replaced with a detection head comprising convolution and
pixel-shuffling layers (Liu et al., [2022a; |Shi et al.| 2016). We represent annotations as Gaussian
blobs centered on object coordinates, designed to segregate small, point-like objects, as shown in
Fig.[I] The target tensor is convolved with a 2D Gaussian kernel to encode object positions. The
loss function combines binary cross-entropy (BCE) and Dice loss (Milletari et al., 20165 |Sudre et al.,
2017) to handle class imbalance effectively:

L(y,§) = aBCE(y,y) + (Dice(y, ¥), (1)
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Figure 2: Example qualitative SAR object detection results. a. Fine-grained detection of small
objects. The supervised model fails at distinguishing the concentrated target objects b. Robust to
false reflective objects. The supervised model generates false positives. ¢. Precise detection. The
supervised model has mixed false and true predictions. d. Similar performance in the rural areas
where reflective objects are distinct from the background.

where « and 5 weight the loss components. To address imbalance further, the loss is adaptively
weighted, and unpopulated pixels caused by imperfect projection of the georeferenced data onto the
rigid tensor grid are excluded from calculations.

2.2 ADAPTIVE SAMPLING SCHEDULER

We describe the adaptive sampling scheduler (AS) to handle class imbalance. The AS is based on
curriculum learning (Bengio et al.,|2009) and hard negative sampling (Shrivastava et al.,[2016) that
demonstrates a strategy of gradual learning from easy to hard samples significantly improves the
generalisation and imbalanced learning (Guo et al., [2018). The scheduler dynamically tailors the
target distribution during the training process, transitioning it from an imbalanced to a balanced
state within a batch.

Let C; be the cardinality of the set of samples belonging to class 7. We introduce the vector d"" to
represent the training class distribution. For each attribute, the i™ element of the class distribution
d™™ js defined as the ratio of C,,q, — C; to the size of majority class, C,,q. to over-sample the
minority classes in the early stages. Explicitly, we define d"™" = (d'")K by setting d; = 1 —
C;/Cmaz, where K represents the number of classes. The sampling scheduler dictates the target data
distribution d“"&*" = (d"**") K| of the attributes in each batch as a function of epoch ¢. Initially, the
target distribution of one attribute in a batch is set to imbalanced d"™". During the training process,
it gradually transfers to a balanced distribution with the subsequent function at epoch ¢:

target dgrain ift=0
dz’ (t) = (dt—rain)ag(t)Jr(lfa)h(t) >0 3 )

where g(t) € [0, 1] is a sampling scheduler function such as linear, cosine and exponential following
the prior work of Wang et al.{(2019), h(t) € [0, 1] is a sampling regulariser function based on model
performance such as the F1 score, « is the sampler weight. Function g(t) is akin the class-balancing
techniques recommended for handling long-tailed class distributions (Wei et al., [2021}; |Hoyer et al.,
2022). We introduce the function h(t) to assist the scheduler in monitoring model performance
and dynamically prioritizing classes that may lead to false detections. It is worth noting that h(t)
can exhibit fluctuations across epochs without a regulariser, ¢g(¢). Thus, we put a larger weight
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Method Model | Pretraining | AP25 AP50 AP75 mAP | Precision Recall F1
SSL ViT-Uper(Liu et al.||2022b||Jain et al.|2023) | RGB 36.77 40.09 4126 3887 | 40.14 4226  41.17
SAR-MIM 4486 5197 5426 47.73 | 52.06 48.27  50.09
VIT-MAE(He et al.{[2022) RGB 3478 38.29 39.81 36.27 | 38.75 41.16  39.92
SAR-MIM 46.12 5379 58.44 50.14 | 55.51 4794 5145
DPT(Ranftl et al.|[2021) RGB 3643 3837 4029 37.61 | 39.25 42.18  40.66
SAR-MIM 51.10 55.03 5884 5289 | 5529 62.15 58.52
SegFormer(Xie et al.[|2021) RGB 3481 3639 40.87 3579 | 38.59 4276 40.57
SAR-MIM 4528 49.74 5123 47.10 | 50.6 60.38  55.06
TRANSAR-medium SAR-MIM 50.56 5341 60.70 5I.17 | 56.72 82.06 67.08
TRANSAR-large RGB 5457 6211 6481 59.84 | 62.86 63.57 63.21
SAR-MIM 60.10 6890 8545 66.77 | 77.86 80.53 79.17
Supervised DeepLabv3(Chen et al.|[2017) RGB 25.7 28.25 28.89 27.80 | 28.90 59.20  38.84
No 2359 2638 26.69 2571 | 26.68 49.84 3476
UNet-SENet(Shermeyer et al.[[2020) No 29.37 3409 3755 3216 | 35.18 3849  36.76
SAR 43.63 45.19 4741 44.52 | 46.10 56.10  50.61

Table 1: Comparative object detection performance of TRANSAR with the state-of-the-art super-
vised and self-supervised architectures.

on g(t) to ensure a gradual change in the distribution (Appendix Fig. [3|illustrates the evolution
of the foreground and background sample ratio for K = 2 and a = 0.8). According to target
distribution d"™'&'(¢), the majority class samples are dynamically selected and the minority class
samples are re-weighted in different epochs to update the current class distribution. Due to the
dynamic class weights calculated by the scheduler, we adapt the class weights in the loss function
described in Sec. [2.1| proportionate to d"™. For each epoch t, the per pixel weighted loss is defined
as ﬁi(y, ¥) = w(t) - L(y,¥), where L is the per pixel, unweighted objective function given by
(1)

Eq. I d™ 1!, where max{-} is

. The loss weight, w(t), at epoch ¢ is given by w(¢) = max {m,
the element-wise maximum.

3 RESULTS AND DISCUSSION

We demonstrate that the proposed approach outperforms state-of-the-art supervised and self-
supervised methods on benchmark SAR object detection datasets. Additionally, we present a de-
tailed ablation study on the SSL architecture, adaptive sampling, and SAR preprocessing, along
with qualitative insights. The evaluation is conducted on the X-band, single-polarized (HH) spot-
light SAR imagery datasets with approximately 0.3m resolution. The first is a proprietary vehicle
dataset comprising 134 images annotated by SAR analysts. The second dataset includes 1028 unla-
belled, geo-coded, and terrain-corrected satellite images from Capella Space (Cap)), covering about
25700 km?. These unlabelled images are used exclusively for SSL-MIM pretraining.

We compare TRANSAR with state-of-the-art SSL architectures, such as UperNet (Liu et al., [2022b;
Jain et al.| 2023), MAE (He et al., 2022), DPT (Ranftl et al., [2021), and SegFormer (Xie et al.|
2021), as well as traditional supervised methods like DeepLabv3 (Chen et al., |2017) and UNet-
SENet (Shermeyer et al., 2020). Tab. |l| presents detailed comparative detection scores, including
average precision (AP) calculated at 20 intervals in {0.05,0.10, ..., 0.95}, as suggested in (Lin et al.,
2014). We report precision, recall, and F1 scores at the threshold yielding the maximum F1 score.
For fair comparison, large-size models of competing SSL architectures are used, with details in the
supplementary material.

The results show that TRANSAR-large outperforms other approaches with consistent mAP scores
across varying precision thresholds and achieves a well-balanced F1 score between precision and
recall. TRANSAR-medium, despite its smaller size, achieves comparable performance to larger
SSL models, while TRANSAR-tiny underperforms due to its inability to distinguish foreground
objects from the background.

Fig. 2] provides qualitative comparisons between the best-performing supervised UNet-SENet model
and TRANSAR. TRANSAR excels in densely distributed objects (Fig. 2a)), addressing non-uniform
object distribution challenges. It is also more robust to false positives caused by radar-reflective
objects like pylons (Fig.[2b) and achieves higher precision in detecting true positives while reducing
false positives (Fig.[2c). In simpler scenarios (Fig.[2d), both models perform similarly, especially in
rural areas with distinct SAR intensity differences from the background. However, urban areas with
dense reflections remain challenging for all SAR object detection models, as shown in supplemen-
tary figures. We provide a further discussion of TRANSAR in Appendix [G}
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SUPPLEMENTARY MATERIAL

In the following pages, we provide supplementary information related to the methodology, experi-
mental setup and results.

A TRANSAR AT DIFFERENT SCALES

We describe the architecture details of TRANSAR in Sec.[2] We provide additional details of model
parameters at different scales in Tab. [2] The provided configurations pertain to the TRANSAR
backbone models, a deep learning architecture used for SAR object detection tasks. These settings
define critical parameters for the model’s architecture and training process. Notably, the “hidden
size” determines the dimensionality of the encoder layers and the pooler layer, while “image size”
specifies the resolution of each image. The “’patch size” and ”window size” parameters determine the
size of patches and windows, respectively. “num channels” signifies the number of input channels,
and “embed dim” defines the dimensionality of patch embedding. The ”depths” list characterises the
depth of each layer in the Transformer encoder, and "num heads” represents the number of attention
heads in each encoder layer. ”qkv bias” indicates whether biases are added to queries, keys, and
values. These configurations collectively shape the behaviour and capabilities of the TRANSAR
models for a given task.

Configuration \ Tiny Medium Large
#params (m) 27 86 195

image size 512 512 512

hidden size 768 1024 1536

patch size 4 4 4

window size 7 7 12

embed dim 96 128 192

depths [2,2,6,2] [2,2, 18, 2] [2,2,18, 2]
num heads [3,6,12,24] [4,8,16,32] [6,12,24,48]
gkv bias true true true

Table 2: Details of the TRANSAR models at tiny, medium and large scales.

A.1 ABLATION STUDIES

We run ablation studies to better understand the role of TRANSAR components. Appendix
summarises the results on different adaptive sampling schedulers, normalisation functions, and var-
ious pretraining mask sizes. For the experiments in each ablation category, we keep the best setting
in the other categories. Although the adaptive sampling schedulers achieve overall best-performing
results compared to the baseline SSL and supervised methods, the cosine scheduler achieves the
best F1 scores with a clear margin. When we disable the scheduler, we observe a significant drop
in the performance, highlighting the major contribution of the adaptive sampling. With respect to
the normalisation, we observe less variation in the performance of various normalisation functions
compared to the schedulers. The logarithmic normalisation achieves the best F1 score among the
linear and arctan functions, which is aligned with the existing SAR radiometry visualisations (Cap.
Finally, we investigate the effect of the block-masking size used during the pretraining MIM stage.
We observed that the larger mask values ignore the background intensity variations and generate
poor reconstructed regions. On the other hand, when we use smaller mask sizes such as 4, the model
creates blurry reconstructions. Thus, the model pretrained with the mask size of 8 gives the best
detection scores in the fine-tuning stage.

A.2 PRETRAINING.

We analyse the model performance on different domains with pretraining on RGB and SAR images
to prove the effectiveness of the proposed approach regardless of the pretraining domain in Tab.



ICLR 2025 Machine Learning for Remote Sensing (ML4RS) Workshop

Ablation Settings | Precision Recall F1
AS Scheduler None 56.08 68.29 61.59
linear 68.87 70.6 69.72
exponential | 70.26 7251 7137
cosine 77.86 80.53 79.17
Normalisation linear 73.56 73.12 73.34
arctan 7591 74.28 75.09
log 77.86 80.53 79.17
Mask size 32 69.98 71.13 70.55
16 74.59 76.18 75.38
8 77.86 80.53  79.17

Table 3: Ablation study on TRANSAR design choices. Each ablation category uses the best setting
from the other categories.

The MIM pretraining improves the overall performance of the SSL models, showing the effective
use of the unlabelled data via the block-masking strategy. Specifically, the TRANSAR-large model
pretrained with SAR MIM achieves the best performance in terms of both mAP and F1 scores, out-
performing the competing approaches with significant margins. Supervised UNet-SENet pretrained
on SAR outperforms the SSL models with a clear margin in terms of both mAP and F1 scores.
However, it performs poorly when compared in the same SAR pretraining setting, indicating the
importance of effective SAR domain-related pretraining.

A.3 INFERENCE.

Our inference pipeline differs from the conventional bounding box paradigm in favour of a
segmentation-based approach to object detection. The model outputs probability heatmaps, ¥, which
represent the likelihood of object presence at each pixel location. To distil this dense probabilistic
information into object locations, we apply thresholding at a confidence level ¢ = 0.5, thereby
retaining only the most salient features of the heatmap. Subsequently, we employ a peak detec-
tion algorithm to decode these thresholded heatmaps into Cartesian coordinates, identifying local
maxima that serve as putative object centres.

In lieu of the Intersection over Union (IoU) metric used for for Non-Maximum Suppression (NMS),
our framework introduces a distance-based criterion. We compute the pairwise distances between
the detected peaks, and if any two peaks are within a predefined non-maximum suppression distance
dnms, we suppress the peak with the inferior confidence score. This approach ensures that each
object is represented by a single, distinct peak. The accuracy of our object localization is quantified
using a hit distance metric, dp;;, which offers a more direct measure of spatial accuracy than IoU. A
prediction is deemed a true positive if it lies within the dp;-distance of a ground truth target.

B IMPLEMENTATION DETAILS.

We use the same number of epochs, data processing, dataset splits, hyperparameter set, early stop-
ping criteria and backbone size for a fair comparison of the models. We follow the existing work
for the pretraining Capella dataset and the annotated dataset, we use 80% of the SAR images for the
training, 10% for the validation, and 10% for the test. We optimise the pretraining and fine-tuning
stages with the Adam optimiser and a warm-up cosine learning rate scheduler. We train the models
for 100 epochs for pretraining and 25 epochs for fine-tuning with 4000 iterations per epoch; and
batch size 16 for pretraining and 8 for fine-tuning on two NVIDIA v100 GPUs, where each itera-
tion samples chips from the next image in the dataset. The supervised experiments follow the same
settings as the fine-tuning experiments. We use the widely used object detection metrics such as
F1, average precision (AP) and mean AP (mAP) at different thresholds [Lin et al.| (2014). We set
Snorm = 16 for the SAR image normalisation constant, and the Gaussian kernel o = 10, and loss
weights a = 0.05, 8 = 1 for all the experiments.
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Figure 3: Example normalised sampling distribution of foreground (positive) and background (nega-
tive) samples in different precision performances. The sampler frequently draws foreground samples
in the early epochs and switches to background samples to improve the precision. a. Constantly im-
proving precision. b. Precision stalls after epoch 100 and the distribution shifts towards heavy
negative sampling.

C DETAILED PARAMETERS OF THE SELF-SUPERVISED BASELINES

We use the model parameters suggested by the authors for both the supervised and the self-
supervised models. However, DPT [Ranftl et al.| (2021)) and SegFormer Xie et al.| (2021)) models
offer various model scales with slightly different architectures. ViT-Uper (Liu et al.l 2022b) imple-
mentation used in the experiments is based on the implementation by Jain et al.|(2023). We provide
the detailed architectural configurations of the baseline methods used in this study for a clearer
comparison.

DPT Ranftl et al. (2021)

* #params (m): 305, Number of trainable parameters of the model.
* hidden size: 1024, Dimensionality of the encoder layers and the pooler layer.
* num hidden layers: 24, Number of hidden layers in the Transformer encoder.

* num attention heads: 16, Number of attention heads for each attention layer in the Trans-
former encoder.

* intermediate size: 4096, Dimensionality of the “intermediate” (i.e., feed-forward) layer in
the Transformer encoder.

* patch size: 16, The size (resolution) of each patch.

* neck hidden sizes: [256, 512, 1024, 1024], The hidden sizes for projecting the feature
maps of the backbone.

SegFormer Xie et al. (2021) We use the largest model provided by the authors.

 #params (m): 82, Number of trainable parameters of the model.

* num encoder blocks: 4, The number of encoder blocks (i.e., stages in the Mix Transformer
encoder).

 depths: [3, 6, 40, 3], The number of layers in each encoder block.

* srratios: [8, 4, 2, 1], Sequence reduction ratios in each encoder block.

¢ hidden sizes: [64, 128, 320, 512], Dimension of each of the encoder blocks.
 patch sizes: [7, 3, 3, 3], Patch size before each encoder block.

* num attention heads: [1, 2, 5, 8], Number of attention heads for each attention layer in
each block of the Transformer encoder.
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Supervised

Figure 4: Example detection results in urban areas. Highly reflective objects pose a significant
challenge for the models. Both TRANSAR and supervised approaches generate false predictions as
shown in the chips.

D DATASET DETAILS

We use 1028 unlabelled X-band spotlight SAR images at the spatial resolution of 0.35 m for both
range and azimuth, provided by Capella/Cap, Each image covers a nominal scene size of 5 x 5 km.
The sensor load utilises nine looks to capture the scene, providing an azimuth resolution of 0.5 m.
The ground range resolution varies between 0.4 — 0.7 m, while the pixel spacing is at 0.35 m. The
look angle range for this product spans from 25° to 50°. Our 134 X-band SAR images have the
same specifications as the unlabelled data. The annotations are in WGS84 point coordinates.

D.1 DATA PROCESSING

Training samples are composed of batches of Ly x Ly chips randomly cropped out of georefer-
enced and terrain-corrected images. We apply geometric (random flips, affine transformations) and
radiometric (brightness, contrast, gamma) augmentation. Although some of these augmentations
result in physically implausible SAR images [Wangiyana et al] (2022), we found that they still im-
prove the overall performance, aligned with the observations in earlier work [Shermeyer et al.| (2020).
SAR data are usually discretised into 16-bit images, and the pixel values approximately follow the
Rayleigh distribution. Inspired by the normalisation techniques used in the geographic information
systems to make SAR images visually comprehensible (2019), we propose a logarithmic
normalisation as part of the TRANSAR transformation pipeline, i.e.,

5( = 10g2 (X)/Snorv‘m (3)

where S, 1S a normalisation scale constant. The effectiveness of the normalisation pipeline is
shown in Appendix [A-T] Finally, the normalised input data is normalised as follows:

)A(norm = ()A( - /'[/C)/0-97 (4)
where the mean, p., is calculated per chip and the standard deviation, o, is the global standard
deviation of the training dataset.

During the evaluation, the chips are sampled from the SAR images as a regular, overlapping grid,
and only the centre cropped L% x LE, output pixels are used for calculating the evaluation metrics.
This is to provide sufficient context and avoid lower-confidence predictions close to the boundary of
the receptive field.
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Figure 5: Sensitivity analysis on auxiliary segmentation task in terms of precision recall curves. a)
NMS distance. b) Confidence threshold. ¢) Hit distance.

E CHALLENGES IN URBAN ENVIRONMENTS

In urban areas, object detection faces unique challenges, particularly when dealing with highly re-
flective objects. These objects, characterised by their reflective surfaces and diverse shapes, often
pose a significant challenge for detection models. In our experiments, as illustrated in Fig. [ in
the supplementary material, we observe instances where both TRANSAR and traditional supervised
approaches generate false predictions. These false predictions are particularly evident in the visual
chips (all the detections in the chips are false-positives), highlighting the complexity of accurately
identifying and delineating highly reflective objects within urban environments. This challenge
underscores the importance of robust and adaptive detection techniques to effectively address the
intricacies of object detection in urban settings.

F SENSITIVITY ANALYSIS

We present sensitivity analysis for the auxiliary segmentation task on precision-recall curves applied
to the labelled data, as illustrated in Fig. [5] for the baseline DeepLabv3 model. Our objective was
to analyse the precision and recall of this fixed model on a predefined test set, while varying three
critical hyperparameters:

1. NMS Distance: We investigated the model’s performance over a range of NMS distances
from 0 to 500, with 10 data points. Our default value for this parameter is 23.

2. Confidence Threshold: We assessed the model’s behavior by varying the confidence
threshold from O to 1 in increments of 0.1. The default value for this threshold is set at
0.5.

3. Hit Distance: To explore the impact of hit distance on the model’s output, we examined a
range from 1 to 10,000, with 2,000 data points. The default hit distance value is 45.

Adjusting the first two parameters necessitated re-running inference, which is why there are only ten
points on the corresponding curves. However, the hit distance could be modified without the need
for re-inference by filtering the output. The red data point on these curves signifies the threshold
values we selected for the deployed model, or very close approximations. In the case of hit distance,
there are numerous data points, and the red dot is located at approximately P = 0.318 and R = 0.88
on the far right.

G DISCUSSIONS

SSL is promising for SAR object detection. Detailed comparative evaluations of the supervised
and SSL models show that the SSL approaches suggest superior performance for SAR object de-
tection. Nevertheless, detecting objects in urban areas continues to pose a significant challenge for
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both SSL and supervised models. We foresee that the SSL approaches will gain more prominence
as more SAR imagery becomes available for research. We hope to inspire wider object detection
research in related challenges such as high data imbalance and tiny object detection, especially in
the SAR domain.

Benchmarks and datasets are needed. We observe that more well-defined benchmarks and anno-
tated multi-variate datasets are needed in this domain to have a more profound analysis and solutions
to the problem. Although there are several datasets emerging for various other tasks such as seg-
mentation and temporal analysis, the limited number and content of the existing datasets constitute
a bottleneck for the advancements in the domain.

Ethical Considerations. The TRANSAR models in satellite-borne SAR imagery enhance object
detection capabilities. We believe the results reported in this paper and advances made are of gen-
eral interest to the researchers studying computer vision in remote sensing. Example applications
include disaster management, environmental monitoring, and urban monitoring. However, this tech-
nology could be repurposed, e.g., for military applications. Potential misuse are not inherent to the
TRANSAR models we introduce in this paper, but a risk that exists with SAR technology in gen-
eral. We believe that it is of general interest to the community and the public to raise awareness of
what is possible today. We recommend mitigating the risks associated to potential misuse by the
implementation of strict access control and clear usage policies that ensure that the technology is
used ethically and responsibly.
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