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ABSTRACT

Heavy Rare Earth Elements (HREEs) are critical for the production of most elec-
tronic devices. Rapidly increasing demand for these minerals has led to a prolifer-
ation of highly polluting makeshift HREE extraction in Myanmar. Monitoring the
spread of these mines is important for the preservation of human health and the
environment. This paper utilizes a geospatial foundation model pre-trained using
self-supervised learning to detect hundreds of rare earth mines using a single tem-
plate example. This is achieved through the development of a novel method for
embedding similarity search— Cosine Contrast— which leverages both positive and
negative templates to yield more relevant results.

1 INTRODUCTION

Heavy Rare Earth Elements (HREEs) are essential components in the production of electric vehi-
cles, military hardware, and consumer electronics (U.S. Geological Survey, 2014). Demand for
these metals is projected to increase fivefold by 2040 (Canada, 2025). Recently, China’s imports of
HREESs from Myanmar have risen from $1.5 million in 2014 to $1.4 billion in 2023 (Witness| 2022).
An investigation by Global Witness found extensive illicit production and trade of these minerals in
rebel-controlled areas along Myanmar’s northeastern border with China 2024). The un-
regulated mining of rare earth elements poses significant risks to human health and the environment.

Several studies have used supervised learning to detect similar Artisanal Small-scale Mining (ASM)

operations, often in the Amazon or Sub-Saharan Africa (Ballinger, 2023} [al, 2016; [Kimijima et al.l
2021} [Nava et al} [2022; [Nyamekye et al., 2021}, [Simionato et al. [2021). For example, (Owusu-

Nimo et al., [2018) developed a deep convolutional neural network applied to Sentinel-2 satellite
imagery in Ghana, achieving high accuracy. Their approach demonstrated the ability to monitor
ASM, including quantifying illegal mining-related deforestation within protected forests. However,
supervised learning often requires hundreds if not thousands of labeled examples in order to perform.

Recent progress has been made in the application of Self-Supervised Learning (SSL) techniques in
earth observation (Jakubik et al.| [2023). These methods require no further labels once pre-trained,
and generate numerical representations of the features contained in patches of satellite imagery,
called embeddings. This paper explores the use of a pre-trained geospatial foundation model to
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Figure 1: HREE precipitation reaction in 3m PlanetScope imagery



ICLR 2025 Machine Learning for Remote Sensing (ML4RS) Workshop

detect HREE mining in Myanmar, and proposes Cosine Contrast as a novel method for the retrieval
of semantically similar embeddings. The proposed method achieves high accuracy (AUC=0.95)
using a single example of HREE mine to identify hundreds of others in the area.

2 METHODOLOGY

2.1 DATA

The main source of data used in this study is PlanetScope satellite imagery, which has a spatial
resolution of 3 meters per pixel and a daily repeat cycle. One main collection on 2022-03-07 was
used for inference, covering an 1,800 km? area north of Pang War, on the China-Myanmar border.
All eight spectral bands were employed. Because HREE precipitation pools are approximately 10-
15 meters in diameter, 10 meter Sentinel-2 imagery would be too coarse to identify individual pools.
Figure[I|displays PlanetScope imagery showing the HREE precipitation reaction occurring at a mine
near Pang War, Myanmar. The pools cycle from blue to white over the course of 5-6 days. Pixel
standard deviation over time reveals which pools are in use.

For validation, the coordinates of 2,792 HREE precipitation pools were used. These labels were
generated manually by Global Witness in March of 2022, as part of their investigation (Witness,
2022).

2.2  SELF-SUPERVISED LEARNING

Self-supervised learning for Earth observation leverages unlabeled satellite imagery to pre-train
models by learning meaningful representations through tasks such as image reconstruction (Jakubik
et al.| [2023)). These models can then be fine-tuned with limited labeled data for specific applications
such as land cover classification, object detection, and change detection (Jakubik et al., 2023). This
approach significantly reduces the need for extensive labeled datasets, enabling more scalable and
efficient analysis of remote sensing data.

Recently, a number of global “foundation models” have been developed by pre-training on large
geospatial datasets using MAE, including Stanford’s SatMAE (Cong et al.,[2023)), NASA and IBM’s
Prithvi model (Jakubik et al.l[2023)), the Allen Institute’s Satlas model (Bastani et al.,[2023)), and the
Clay Foundation Model (Clay| 2025), which was used herein.

Clay was pre-trained using a Masked Autoencoder on 33.8 Terabytes of satellite imagery from a
range of modalities, including PlanetScope imagery (Clayl}, 2025)). This was one of the main reasons
Clay was selected for this task, as PlanetScope imagery for Myanmar is freely available and high
enough resolution (3m) to identify individual HREE precipitation pools, as shown in Figure[I]

2.3 EMBEDDING EXTRACTION

To extract embeddings, the Planetscope mosaic of the study area was divided into evenly sized
250m-by-250m (84 pixel) patches. This patch size was selected on the basis of the observed size of
HREE mines in the area. Of the resulting 28,757 patches, 531 (roughly 2%) contained at least one
HREE precipitation pool, with some containing up to 23 pools.

The Clay vl model outputs 768-dimensional embedding vectors that encode features within the
patches. Figure [3al reduces the embeddings to two dimensions using the Uniform Manifold Ap-
proximation and Projection (UMAP) (Mclnnes et al., 2020), with patches containing a HREE mine
colored in red and sized according to the number of precipitation pools therein. When plotting the
patches in embedding space— even when reduced to two dimensions— semantic differences between
these two sets of patches become clear.

2.4 EMBEDDING SEARCH: COSINE CONTRAST

Once the patch embeddings have been generated, these can be used to search for similar embeddings.
A standard approach for similarity search between vectors is to compute the cosine similarity (Xia
et al., [2015). Given two embeddings—-E;, which was generated from a patch known to contain
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Figure 2: Cosine Contrast (k = 1) for 250m patches, HREE mines indicated in green

a HREE mine (m(E;) = 1), and E; for which the value of m is unknown— cosine similarity is
calculated as follows:

E; E,

v ) 1
T TR | W

cosl; ; =

A high value of cos 6; ; would suggest that E; also contains a HREE mine. In practice, we may have
a number (k) of template embeddings that comprise a set P of positive examples:

P={E{.E},... B |mE])=1Vjec{1,2,... k}}

Calculating the average cosine similarity between E; and the set of positive templates P yields an
average similarity score:

1
Hi,p = W;DCOS 01‘,]‘ (2)

Calculating average similarity using a set of diverse positive examples improves the retrieval of
relevant information by introducing variation in irrelevant features (e.g., background or surrounding
vegetation). Extending this logic, detection would be further improved by explicitly contrasting E;
with a set of negative templates N—embeddings generated from patches in which no mine is present:

N ={EY.EY,.. . EY |mE))=0vje{1,2,... k}}
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Following the calculation of the average similarity between E; and the positive templates p; p and
the negative templates y; n, the Cosine Contrast (A;) can be calculated as the normalized difference
between the two:

A; = Mip — Hi N 3)
Wi P+ Wi N

This process yields values that range from -1 to 1, where positive values indicate that the corre-
sponding embedding is more similar to the positive template than the negative template.

3 RESULTS
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Figure 3: Comparison of UMAP projection and ROC curves

Figure [2] shows Cosine Contrast values for patches in the study area, using one positive and one
negative template (k = 1). Patches containing a HREE mine are indicated in green. There is strong
alignment between positive Cosine Contrast values, shown in red, and HREE mine presence. If
patches with negative Cosine Contrast values (blue areas) are discarded, 95% of the patches con-
taining mines are retained, while the overall sample size is reduced by 82%. The process could be
repeated iteratively with the remaining patches, allowing an end user to implicitly highlight relevant
features by select negative examples and further increase the purity of the results.

Figure [3b] plots the Receiver Operating Characteristic curves for the task of discriminating between
patches that contain an HREE mine and those that don’t. The blue ROC curves were generated
using the cosine similarity score using each patch containing a mine as the positive template. While
this often generates good results, the efficiency of cosine similarity-based embedding search for
mine detection is sensitive to the choice of the template example; The average AUC using a single
template is 0.86+0.14. When certain templates are used, AUC drops below 0.5, meaning it performs
worse than a random classifier.

However, when Cosine Contrast is used, AUC for mine detection reaches 0.95, nearly 10% higher
than the average AUC when only a positive template is used. Simply setting a threshold value of
Cosine Contrast to classify patches into mine/no mine is 98% accurate, with an F1 score of 0.4.
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4 CONCLUSION

The use of supervised learning requires a large number of labeled instances of such mines, which
are unlikely to be readily available. The patch embeddings generated by Self-Supervised Learning
models enable the efficient detection of similar ground targets using a single template image, though
performance can be variable. The use of negative examples to calculate Cosine Contrast further
improves accuracy. In the study area, sorting all patches in descending order of Cosine Contrast
places 90% of the HREE precipitation pools in the first 10% of the ordered data. This enables
efficient wide-area search for HREE precipitation pools.
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A APPENDIX

If you choose to include an appendix, please submit it as a separate PDF file.
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