

A Distribution Shift Benchmark for Smallholder Agroforestry:

Do Foundation Models Improve Geographic Generalization?

Stanford University¹, World Agroforestry Centre²

siddsach@stanford.edu

ICLR 2024 ML4RS Workshop

Motivation

- Recent work has reported high accuracy in applying deep learning to individual tree detection
- Performance drops under distribution shifts are common for these approaches
 We introduce the first distribution shift benchmark dataset for remote sensing tree detection and ask:
- (1) How does performance drop under geographic distribution shift?
- (2) Do foundation models improve robustness

Methods

- We perform three types of evaluations:
 - (1) Conventional
 - (2) Distribution shift
 - (3) Few-shot domain adaptation

Dataset

- stratify Rajasthan into 8 agro-climatic zones
- sample train & test images for each zone
- annotate individual tree masks for each image
- split In-Distribution (ID) & Out-of-Distribution (OOD) zones for distribution shift evaluation
- do QA using inter-annotator agreement & field inventories

- Compare performance of a baseline (Faster-RCNN), with computer vision foundation models (SAM, Grounding DINO)
- We report per-zone accuracy metrics and compare performanance of our model with a recent tree cover product released for India

Irrigated Northern

< 300 mm

Hyper-Arid Western Plains

0.77

Flood-prone

Eastern Plains

500-600mm

600-900mm

Figure 1. Example Images from different Agro-climatic Zones

Transitional Plains

of Luni Basin

300-500mm

Results

Table 1. Distribution Shift Evaluation AP Metrics				
Method	Evaluation Type	ID AP	OOD AP	
Faster-RCNN	Conventional Evaluation	77.8	63.1	
Grounding DINO Full Finetune	Conventional Evaluation	82.1	66.7	
Faster-RCNN	Distribution Shift Evaluation	77.8	44.1	
SAM Finetune Full Finetune	Distribution Shift Evaluation	78.1	48.5	
SAM Finetune Head	Distribution Shift Evaluation	77.7	48.3	
SAM Finetune Head then Full	Distribution Shift Evaluation	59.2	41.7	
Grounding DINO Full Finetune	Distribution Shift Evaluation	81.4	49.5	
Frounding DINO Finetune Head	Distribution Shift Evaluation	81.0	50.5	
Grounding DINO Finetune Head then Full	Distribution Shift Evaluation	80.8	48.7	
Table 2.Per-zone evabest existing c	luation of tree count R^2 for o lata product for tree cover in Ind	ur model aga lia	ainst	
Zone	Grounding Dino R ² B	randt Prod	uct R ²	

0.862

Predicted Tree Count

Figure 2. Predicted v.s True Tree count on In-Distribution Test Set, each point is image-level tree count in a 400x400 pixel image with 0.5-m resolution.

Figure 3. Few-shot OOD Evaluation of Grounding Dino and Faster-RCNN.

Transitional Inland Drainage	0.97	0.806
Semi-Arid Eastern Plains	0.916	0.746
Sub-humid Southern Plains	0.919	0.347
Irrigated Northern	0.818	0.589
Transitional Plains of Luni Basin	0.759	0.619
Flood-prone Eastern Plains	0.771	0.576
Humid Southeastern Plains	0.764	0.326

Conclusion

- Strong performance of our deep learning model in tree detection, similar to recent work and better than best existing product in India.
- Significant drop in performance in OOD agro-ecological zones
- Foundation model based approaches including SAM & Grounding DINO show improvements in both ID & OOD performance, but also exhibit similar performance drops in OOD
- Large variation in accuracy as some areas more inherently difficult.
- With 10 ID examples, baseline performance OOD is similar to foundation model performance.