

quantify uncertainty. Those datasets that quantify uncertainty predominantly rely on unreliable methods.

Why Conformal Prediction?

Benefits

- Distribution-free
- Validity guarantee Æ
- Spatially-explicit uncertainty regions
- Applied post-hoc
- Supports numerous machine learning tasks

Assumptions

Exchangeability

Drawbacks (*Under active research)

- *Marginal coverage
- *Distribution shifts
- *Label errors
- *Missing data

Research Contributions

- Systematic literature review to provide empirical evidence for:
 - Lack of uncertainty quantification
 - Popularity of problematic methods
 - The need for conformal prediction
- Introduces open-source Google Earth **Engine** native conformal prediction **modules** that support:
 - Small to large datasets
 - Classification and regression tasks
 - Traditional machine learning and deep learning workflows
 - JavaScript and the Python API

rar eval = evalFunctions.evaluate(points, bandNames, QHAT, SCALE, SPLIT, 'demo_ICLR24');

var uncertainty = infFunctions.inference(classProbabilityImage, bands, QHAT);

Uncertainty: Google Dynamic World 2020

Canopy height (m)

*Open-source implementations

- **Case studies** that use the introduced modules to demonstrate:
 - **Scalability** to global datasets
 - Validity despite spatial autocorrelation
 - Applicability to common tasks i.e., Land cover classification, canopy height estimation and invasive species classification.

Google Dynamic World

Each scene contains the probability-like score for each of the nine land cover classes at each pixel. We use the out-of-sample reference labels in the provided validation data to calibrate and evaluate a set-valued conformal classifier. The length of the multilabel sets are presented (alpha = 0.1)

Canopy Height Estimation

A LGBM model is trained on planet NICFI VNIR bands and the GEDI rh98 band across Africa. A out-of-sample partition is then used to calibrate and evaluate a conformal quantile regression model. The presented prediction width is created by subtracting the upper 97.5th quantile from the lower 2.5th quantile (alpha = 0.05).