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The Problem

Global to national extent earth observation
datasets are used in data-driven decision-
making, contributing to the characterization,
comprehension, and conservation of planet
earth. Despite the importance and benefits of
uncertainty quantification for decision-making,
~79% of these large-extent datasets do not
guantify uncertainty. Those datasets that
guantify uncertainty predominantly rely on
unreliable methods.
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Research Contributions

Why Conformal Prediction?

Benefits

= - Distribution-free

= - \alidity guarantee

*  Spatially-explicit uncertainty regions

= Applied post-hoc

= Supports numerous machine learning tasks

Assumptions
=  Exchangeability

Drawbacks (*Under active research)
= *Marginal coverage

= *Distribution shifts

= *Label errors

= *Missing data

= *QOpen-source implementations
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‘Methods

Systematic literature review to provide
empirical evidence for:

Lack of uncertainty
guantification

Popularity of problematic
methods

The need for conformal
prediction

Introduces open-source Google Earth
Engine native conformal prediction
modules that support:

Small to large datasets
Classification and regression
tasks

Traditional machine learning
and deep learning workflows
JavaScript and the Python API

Case studies that use the introduced
modules to demonstrate:

Scalability to global datasets
Validity despite spatial
autocorrelation

Applicability to common tasks
i.e., Land cover classification,
canopy height estimation and
invasive species classification.
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Results

Systematic Literature Review
79(y Datasets DO NOT
O guantify uncertainty

Basic Usage (GEE JavaScript)

var infFunctions = require('users/geethensingh/conformal:inferenceConformalImageClassifier.js');

var ALPHA = 0.1;
var SCALE = 10,
var SPLIT = 0.8;
var LABEL = 'label’;

var result = calFunctions.calibrate(points, bandNames, QHAT, SCALE, SPLIT, LABEL, 'demo_ICLR24');

var QHAT = 0.06450596045364033;

var eval = evalFunctions.evaluate(points, bandNames, QHAT, SCALE, SPLIT, 'demo_ICLR24');

var uncertainty = infFunctions.inference(classProbabilityImage, bands, QHAT);

Uncertainty: Google Dynamic World 2020
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Google Dynamic World

Canopy Height Estimation

Each scene contains the probability-like score for each of the nine land cover classes at each pixel. We use the out-of-sample reference labels in the
provided validation data to calibrate and evaluate a set-valued conformal classifier. The length of the multilabel sets are presented (alpha = 0.1)

A LGBM model is trained on planet NICFI VNIR bands and the GEDI rh98 band across Africa. A out-of-sample partition is then used to calibrate and
evaluate a conformal quantile regression model. The presented prediction width is created by subtracting the upper 97.5t quantile from the lower 2.5t
qguantile (alpha = 0.05).
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