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Scarcity of labeled synthetic aperture radar (SAR) data Eng»;er { EOEmgdding
and label-abundance of electro-optical (EO) data motivate — 1
EO to SAR transfer via distribution alignment ' et f
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Land use prediction for 4 low-rise classes in the So2Sat dataset R
EO to SAR Transfer Framework:

* Y-shaped network: EO and SAR encoders and a shared classifier
* Pretraining EO encoder and shared classifier on EO data
* Freeze shared classifier
* Update SAR encoder to align embedding distributions of EO and SAR data based on metric
Sliced Wasserstein Distance (SWD) or Maximum Mean Discrepancy (MMD)
Question: Why does Supervised Contrastive EO pretraining lead to better SAR transfer performance?
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Low-rank Source Embeddings Improve Transfer
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Pretraining loss and transfer method _
Pretraining loss

Effective Dimension Reduction as an Optimizable Learning Objective
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* Rank Reduction Loss (+L,.) that directly regularizes the effective
rank of the embeddings outperforms cross-entropy-only baseline
. (Lcg), Supervised Contrastive Loss (+L,), and OLE loss (+L,)
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Coefficient for uniformity loss

54.7

0.6
w
~

‘_| 50.2
VBl 521 515 493
0.7 49.0 [

0.4

SUNIN 49.2 5

U u
= N
SWD transfer accuracy (%)
© ®

(9]
o
Effective EO embedding dimensions

Coefficient for alignment loss
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Can We Condense Clusters Can We Align Distribution

with Even Simpler Distributions? to a Foundation Model (Prithvi)?
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* High effective dimension and inertia make Prithvi’s EO embeddings
poor task-specific alignment targets

* Represent the EO class embedding clusters with * Condensing embedding dimension via contrastive learning (+L) only
Gaussian Mixture Models or One-Hot Vectors and recovers transfer performance comparable to that of standard CNN
scale the variance

* Such simpler EO embedding distributions with lower Model (embeding dim.) MAE (32) MAE (s4) MAE (128 MAE (256
inertia don’t lead to better transfer performance SWD accuracy 52.2:11 52.9:11 51.8:07 51.8:05

Effective dim. 11.6+10 18.0x:2.0 26.8:1.4 32.8:2.1
Upshot: fine-grained information about class Inertia 28108.4:2546.0 51677.6:38852  122952.8:687.4 278275.6:36306.7
distribution and inter-class relations is critical

for the source embedding Transfer performance from Masked Autoencoders trained on So2Sat

EO data highlights the importance of EO training data distribution
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