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MOTIVATION

Passive Acoustic Monitoring (PAM) provides an important tool for wildlife
monitoring by using acoustic recorders deployed in natural environments.
PAM field surveys are conducted over several months, and the resulting
datasets contain thousands of hours of audio, corresponding to Terabytes
of data that needs to be analysed. Deep learning classifiers are typically
used to automate the processing of these large datasets and are trained to
detect animals vocalisations. However, these classifiers are often
computationally expensive and cannot be easily deployed on low resource
devices. Novel approaches are required to facilate real-time monitoring on
low-resource deivces. Hardware and software considerations need to be
factored together to facilitate real-time monitoring systems. Thus, there is a
need for an approach that can reduce the inference time and model

complexity, while maintaining high classifier performance.

ESO ALGORITHM

We propose ESO, a genetic algorithm [1] based approach to optimise the
input spectrograms to the deep neural network. ESO is tasked to select
rectangular bands from the spectrogram. Typically, a full spectrogram
would be used for classification, however this is often not required as the
species of interest usually only vocalises within specific frequency ranges.
In Figure 1 we compare a classical approach to the creation of a CNN for
animal vocalisations using full spectrograms (top), and our proposed ESO
approach (bottom). We applied ESO on an acoustic dataset containing
vocalisations of the Hainan gibbon, the world’s rarest primate.
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Figure 1: Comparing a typical approach to our proposed ESOalgorithm.

In ESO, a gene extracts one band from the spectrogram. A chromosome
contains various genes, and thus can extract multiple bands. The bands are
then stacks to form a new compressed image representation, and input to
the CNN (Figure 2). The original spectrogram had a shape of 75 x 128 (9,600
pixels), and the ESO chromosome produced an image of size 2 x 75 x 5 (750
pixels).
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Figure 2: ESO Gene and Chromosome : Each gene defines one band in the spectrogam.

ESO optimises for the best chromosomes by maximizing its fitness defined as
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where F1is the F1-Score and p is the number of trainable parameters of the CNN
model. This fitness function is defined such that a high fithess means a better
tradeoil between model complexity and model performance.

RESULTS

The table below shows the average performance metric of Baseline and ESO
models over 10 runs with a population size of 20. (ESO took 1hr to execute on
GeForce GTX 1050 Ti, 4 GB). A comparison between the metrics obtained for
baseline CNN and the ESO model shows a 91 % reduction in the number of
trainable parameters and a 71% decrease in inference time.

Metric Baseline ESO Difference (%)
Accuracy ).96 0.94+0.00 —2.01+0.00
Sensitivity .95 0.92+0.01 -3.1641.05
Specificity .97 0.95+0.01 —2.06+1.03
Precision ).92 ).88+0.02 —4.30+42.17
F1-Score ).94 0.90+0.01 —4.26+1.06
Parameters 132,234  11.,863+247 —91.03+0.19
Image Size 9, 728 4, 817 800 —50.48+8.22
Inference time [S] 376.1 106.9 —T71.58

CONCLUSION

ESO can significantly reduce the spectrogram input to CNN classifiers by
identifying suitable compress bands. Inference time is reduced, thus saving
costs to process large acoustic datasets. ESO represents a novel approach to
facilitating real-time monitoring systems.
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