Bootstrapping Rare Object Detection in High-Resolution Satellite Imagery

Akram Zaytar¹, Caleb Robinson¹, Gilles Hacheme¹, Girmaw A. Tadesse¹, Rahul Dodhia¹, Juan M. Lavista Ferres¹, Lacey F. Hugey², Jared A. Stabach², Irene Amoke³ ¹ Microsoft AI for Good Research Lab

² Smithsonian National Zoo & Conservation Biology Institute ³ Kenya Wildlife Trust

Challenge

- How can we solve rare object detection tasks in a new domain without labeled data?
- Problem of "kickstarting".
- In such problems, we are limited by:
 - Small labeling budget + large amounts of high-resolution satellite imagery
 - No spatial priors
 - Limited computing budget

Problem: Given unlabeled imagery and a rare object class of interest, we want to label a core set of representative samples

- ResNet-18).
- **Clustering Algorithms**: KMeans, Bisecting K-Means, or DBSCAN to create clusters. **Sampling Strategies**:
- - **Offline:** Sample based on the static initial probabilities.
- Online: increase the sampling weight of neighbouring samples (e.g., spatially or in feature space).
- **Training**: Post-sampling, use the positive, negative, and annotated samples to train a model.Z

Results

		300 Patch Budget		950 Patch Budget		3
Method	Strategy	% positive	F1	% positive	F1	%
Uniform	Random	1.6 ± 0.2	0.06 ± 0.14	1.5 ± 0.3	0.33 ± 0.19	
Spatial	Proximity	14.0 ± 2.8	0.15 ± 0.12	16.5 ± 6.4	0.42 ± 0.19	1
DBSCAN	Static	3.3 ± 0.7	0.00 ± 0.01	2.8 ± 0.2	0.30 ± 0.16	Ц
	Adaptive	3.3 ± 0.4	0.02 ± 0.02	5.2 ± 1.1	0.31 ± 0.21	•
KMeans	Static	13.3 ± 3.3	0.30 ± 0.23	28.9 ± 8.2	0.72 ± 0.04	2
	Adaptive	28.3 ± 8.6	0.18 ± 0.07	32.6 ± 7.7	0.42 ± 0.17	2
B-KMeans	Static	6.0 ± 0.8	0.28 ± 0.18	6.1 ± 0.2	0.71 ± 0.03	
	Adaptive	19.0 ± 1.0	0.36 ± 0.10	39.0 ± 8.6	0.70 ± 0.13	3

Table 1. Percentage of positive patches found and performance of downstream U-Net model on the boma detection task for different sampling methods under different patch labeling budgets.

Sampling: Iterative sampling & re-weighting under a fixed budget.

,000 Patch Budget

Simulated annotation & found positive samples

AI for Good Lab

Case study: we want to find "bomas" (cattle enclosers) in high-resolution satellite imagery captured over the Serengeti Mara region of Kenya and Tanzania.

Research Directions

- Investigate how the bootstrapping techniques bridge to subset selection methods for incremental label creation.
- Simulate realistic human annotation scenarios where a visual "window-view" is presented instead of individual patches.
- Extend the proposed methods to other established geospatial datasets and examine the trade-offs.

Paper:

