

ICLR

IS THE WORLD **ON TRACK** TO REDUCE CLIMATE & DISASTER **RISK?**

In 2023, the UN Midterm **Assessment of the Sendai Framework for Disaster Risk Reduction 2015-2030 reported:**

Global Mapping of Exposure and Physical Vulnerability Dynamics in Least Developed **Countries using Remote Sensing & Machine Learning**

> Joshua Dimasaka^{1,2,3} Christian Geiß^{4,5}, Emily So^{1,3}

¹University of Cambridge ²UKRI CDT AI for Environmental Risks ³Cambridge University Centre for Risks in the Built Environment ⁴German Aerospace Centre ⁵University of Bonn

A Multi-resolution Multi-pixel Framing

The expensive large-scale operation to standardize [exposure datasets (human settlements) with different & incomplete *physical* vulnerability (building material & construction type) ____ has remained the **primary bottleneck** to providing a reliable understanding and audit of the evolving climate and disaster *risk* globally.

Detection of buildings alone is not enough to understand climate and disaster risks.

Redefining the binary task of building detection to characterize [relevant physical vulnerability] that are being used in the catastrophe modelling practice.

Each

has its own probabilistic model for vulnerability that is derived analytically (physics) or heuristically (expert opinion).

Using ResNet-50 Convolutional Neural Network (f_{θ})

With big [Earth Observation] data comes big responsibility; risky AI for risky disasters is highly interdisciplinary.

Building a global benchmark dataset as a public good with a focus on underrepresented & high-risk areas ensures fairness and transparency to address our risk reduction gap.

Series Satellite Imagery Data

Google Earth Engine

This work is funded by the UKRI Centre for Doctoral Training in Application of Artificial Intelligence to the study of Environmental Risks (EP/S022961/1).

Dhaka

BANGLADESH

OpenSendaiBench A Global EO-based Dataset for Exposure & Physical Vulnerability

- Use elevation maps as prior belief
 - Localize studies such as cities in **Bangladesh & Philippines**
- Incorporate mathematical models of spatial urban morphology growth Expand with Landsat imagery
 - and other **Sentinel** imagery bands

jtd33@cam.ac.uk

Perform probabilistic risk analysis

www.joshuadimasaka.com

12th ICLR 2024 - 2nd ML4RS Workshop, Vienna, Austria