
Each 
has its own 
probabilistic model 
for vulnerability that 
is derived analytically 
(physics) or heuristic-
ally (expert opinion).
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§ Use elevation maps as prior belief
§ Localize studies such as cities in 

Bangladesh & Philippines
§ Incorporate mathematical models of 

spatial urban morphology growth
§ Expand with Landsat imagery

and other Sentinel imagery bands
§ Perform probabilistic risk analysis

The expensive large-scale 
operation to standardize 
[exposure datasets (human 
settlements) with different & 
incomplete physical 
vulnerability (building 
material & construction type)] 
has remained the primary 
bottleneck to providing a 
reliable understanding and 
audit of the evolving climate 
and disaster risk globally.
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IS THE
WORLD
ON TRACK
TO REDUCE 
CLIMATE & 
DISASTER 
RISK?

In 2023,
the UN Midterm 
Assessment of the Sendai 
Framework for Disaster Risk 
Reduction 2015-2030 reported:

OpenSendaiBench
A Global EO-based Dataset for

Exposure & Physical Vulnerability

Detection of buildings alone 
is not enough to understand 
climate and disaster risks.

Redefining the binary task 
of building detection to 
characterize [relevant 
physical vulnerability]
that are being used in the 
catastrophe modelling 
practice.

With big [Earth Observation] 
data comes big responsibility; 
risky AI for risky disasters is 
highly interdisciplinary.

What’s Next?
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Building a global benchmark dataset 
as a public good with a focus on 
underrepresented & high-risk areas 
ensures fairness and transparency to 
address our risk reduction gap.

A Multi-resolution Multi-pixel Framing

Using ResNet-50 Convolutional Neural Network (𝒇𝜽)
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Open Time-
Series Satellite 
Imagery Data

While the 
initially trained 
models tend to 

underestimate 
the large values 

of [informally 
constructed 

buildings], it is 
still capable of 

identifying 
areas with 

relatively high 
& low counts.

This work is funded by the UKRI Centre for Doctoral 
Training in Application of Artificial Intelligence to the 
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With 𝑵	 = 	𝟏𝟎𝟎 tiles per country, each has:

𝑽𝑽
𝑽𝑯

𝑹𝑮𝑩
(𝟑𝟕𝟐, 𝟑𝟕𝟐, 𝟓)
size:

(𝟖, 𝟖, 𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒗𝒖𝒍𝒏𝒆𝒓𝒂𝒃𝒊𝒍𝒊𝒕𝒚	𝒕𝒚𝒑𝒆𝒔)
𝑮𝑹𝑶𝑼𝑵𝑫	𝑻𝑹𝑼𝑻𝑯

→ 𝑷𝒏𝒐𝒏𝒆𝒙𝒄𝒆𝒆𝒅𝒂𝒏𝒄𝒆 via lognormal fit


