A Change Detection Reality Check

Isaac Corley^{1,2}, Caleb Robinson², Anthony Ortiz²

¹University of Texas at San Antonio (UTSA)

²Microsoft AI for Good Research Lab

The State of Change Detection

New architectures for Change Detection (CD) are being proposed almost weekly

Nearly all of them either:

- Have no open-source code
- Have untested experimental code -- likely to have bugs
- Use new training methods independent of the architecture but don't repeat experiments with prior works
- Omit comparisons to better performing architectures (whether purposefully or not)

As a research community we need to do better

This is not unique to CD. Other fields of ML suffer from the same problem:

- Metric Learning (Musgrave et al., 2020)
- Image Classification (Bello et al., 2021)
- Deep RL (Henderson et al., 2018)
- Point Cloud Classification (Uy et al., 2019)
- Video Recognition (Du et al., 2021)

Experiments

We re-benchmark U-Net (Ronneberger et al., 2015) on the LEVIR-CD and WHU-CD datasets

We modify the U-Net architecture to Siamese variants with pretrained backbones:

- *U-Net SiamConc* concatenated features
- *U-Net SiamDiff* difference of features

Our results in indicate that **U-Net does not**require modifications or significant
hyperparameter tuning to achieve SOTA
results

U-Net (2015) is still a state-of-the-art model when properly benchmarked for change detection

Al for Good Lab

The University of Texas at San Antonio™

Benchmarks

Model	Backbone	Precision	Recall	F1
FC-EF (Daudt et al., 2018)	-	86.91	80.17	83.40
FC-Siam-Conc (Daudt et al., 2018)	-	91.99	76.77	83.69
FC-Siam-Diff (Daudt et al., 2018)	-	89.53	83.31	86.31
DTCDSCN (Liu et al., 2020)	SE-Resnet34	88.53	86.83	87.67
STANet (Chen & Shi, 2020)	ResNet-18	83.81	91.00	87.26
CDNet (Chen et al., 2021a)	ResNet-18	91.60	86.50	89.00
BIT (Chen et al., 2021b)	ResNet-18	89.24	89.37	89.31
ChangeFormer (Bandara & Patel, 2022b)	MiT-b1	92.59	89.68	91.11
Tiny-CD (Codegoni et al., 2023)	EfficientNet-b4	92.68	89.47	91.05
ChangerVanilla (Fang et al., 2023)	ResNet-18	92.66	89.60	91.10
ChangerEx (Fang et al., 2023)	ResNet-18	92.97	90.61	91.77
U-Net (Ronneberger et al., 2015)	EfficientNet-b4	92.69	87.16	89.25
U-Net (Ronneberger et al., 2015)	ResNet-50	91.97	89.78	90.38
U-Net SiamConc	ResNet-50	92.87	89.48	90.41
U-Net SiamDiff	ResNet-50	93.21	89.50	90.46

LEVIR-CD Benchmark Results

Model	Backbone	F1	Pre.	Rec.	IoU			
Averaged Over 10 Seeds								
ChangeFormer	MiT-b1	75.65 ± 1.58	77.06 ± 3.22	74.67 ± 1.97	61.60 ± 2.05			
TinyCD	EfficientNet-b4	78.53 ± 1.28	80.15 ± 2.49	77.56 ± 2.13	65.52 ± 1.72			
BIT	ResNet-18	72.67 ± 2.69	70.30 ± 6.36	76.84 ± 4.53	58.06 ± 3.24			
U-Net	ResNet-50	81.85 ± 1.32	83.72 ± 2.65	80.39 ± 2.32	69.96 ± 1.83			
U-Net SiamConc	ResNet-50	81.33 ± 1.08	79.30 ± 2.78	84.19 ± 1.55	69.40 ± 1.52			
U-Net SiamDiff	ResNet-50	82.02 ± 1.48	83.82 ± 3.80	80.92 ± 2.51	70.29 ± 2.00			
Best Seed								
ChangeFormer	MiT-b1	77.75	82.60	78.57	64.22			
TinyCD	EfficientNet-b4	78.53	80.15	77.56	65.52			
BIT	ResNet-18	77.68	78.58	82.13	64.34			
U-Net	ResNet-50	84.17	88.65	83.08	73.23			
U-Net SiamConc	ResNet-50	82.75	83.69	86.56	71.15			
U-Net SiamDiff	ResNet-50	84.01	88.56	85.63	73.02			

WHU-CD Benchmark Results

Path Forward

We need to accurately measure true progress in the change detection field. To do so, we should consider the following steps:

- Utilize a standardized evaluation harness for benchmarking new architectures
- Create *larger* and more *geographically* diverse benchmark datasets
- Create a unified leaderboard for change detection performance
- Encourage all proposed methods to opensource their code/weights