# Learned Embedding Fields for Multi-Source/Multi-Temporal Earth Observation Imagery



Chris Brown<sup>GDM\*</sup>, Michal Kazmierski<sup>GDM\*</sup>, William Rucklidge<sup>G</sup>, Valerie Pasquarella<sup>G</sup>, Sophia Alj<sup>GDM</sup>, Emily Schechter<sup>G</sup>, Sean Askay<sup>G</sup>, Alexis Boukouvalas<sup>GDM</sup>, Evan Shelhamer<sup>GDM</sup>

Google



\* Equal Contribution





#### Many Sources, Many Tasks

















#### **One Learned Embedding** Served as Data for All Tasks

sources -



interface: index by space & time EF[lat, lon, year]



less direct reliance on sources = less expertise needed



no deep network re-training = no waiting (interactive even!)



more learning in the embedding = more maps in fewer labels



## Geography, Time, Outputs



Geography conterminous US + Indonesia + Malaysia years 2018-2022 Time **Dimension** 64 channels / bands **Resolution** 10m<sup>2</sup> annualized



#### **Benchmarking Tasks + Labels**

Land Use LCMAP CONUS 2018 Forest, Devel., Range., Agri., Wet., Other 250-shot episodes x 100 on ~8k test set

**Trees** iNaturalist CONUS 2020-2022 28 genera in union of top-5 for each state 150-shot episodes x 10 on ~11k test set

Eco. Regions RESOLVE IDN-MYS '17 38 zones like New Guinea mangrove 100-shot episodes x 125 on ~14k test set

Google DeepMind

#### **Learning: Self-Supervised Auto-Encoding + Trans-Coding**

input sources -> shared encoder -> latent -> decoders -> input & target sources



#### Inference: Summarizing Sources into Embedding Fields

space ~1 km<sup>2</sup> area of 128x128 pixels at 10m resolution **1 EF idx** = **time** 1 year of 100+ observations across sources sources Sentinel-2, Sentinel-1, Landsat-8/9



#### Visualization by PCA Reveals Sensitivity to Input Details





## **Benchmarking Few-Shot Accuracy by kNN + Linear Models**

| Method         | Dim. | Sources    | <b>Land Use</b> | Trees       | Eco. Regions |
|----------------|------|------------|-----------------|-------------|--------------|
| Data           | 5    | S2         | 51.8 / 66.9     | 8.7 / 10.8  | 10.1 / 14.0  |
| Data           | 17   | S2,S1,LS   | 60.0 / 1.8      | 9.8 / 3.6   | 14.3 / 2.6   |
| <b>MOSAIKS</b> | 8192 | S2(RGB)    | 49.7 / 22.8     | 7.0 / 3.6   | 8.4 / 4.0    |
| <b>MOSAIKS</b> | 8192 | S2         | 60.0 / 55.2     | 9.6 / 3.8   | 11.9 / 3.5   |
| <b>MOSAIKS</b> | 64   | <b>S</b> 2 | 59.7 / 65.8     | 9.3 / 13.9  | 11.9 / 16.5  |
| <b>MOSAIKS</b> | 66   | S2,S1,LS   | 61.8 / 1.8      | 9.7 / 3.6   | 14.2 / 2.6   |
| <b>MOSAIKS</b> | 192  | S2,S1,LS   | 63.1 / 1.8      | 10.0 / 3.6  | 14.9 / 2.6   |
| EF (Random)    | 64   | S2,S1,LS   | 39.2 / 59.1     | 7.5 / 11.2  | 24.0 / 38.8  |
| EF (Ours)      | 64   | S2,S1,LS   | 76.9 / 82.6     | 18.3 / 22.9 | 44.8 / 50.7  |

Tasks Multi-class annualized recognition in US, Indonesia, and Malaysia Metric: Accuracy % Classifiers: Nearest Neighbor (k=3) / Linear Model Summary: more sources = better, learning helps (EF Random vs. Ours), time is is important

### Data Sources: Inputs + Targets

inputs for inference and learning:

Sentinel-2 L1C: RGB, NIR 10m SWIR1 20m & Cloud Score+ Sentine -1 L1GRD: VV, VH, HH, HV, Angle 10m Landsat-8/9 T1: RGB, {N,SW,T}IR1 30m Pan 15m & FMASK targets for learning: GLO-30 elevation

**GEDI** lidar **ERA5-Land** climate

#### References

**MOSAIKS** 

Wulder et al. RS of Env. '22

**VAE** Kingma & Welling. ICLR'13

**HRNet** Wang et al. PAMI'20 Pengra et al. usgs.gov'21 **Trees / iNaturalist** 

iNaturalist.org & gbif.org'23

Land Use / LCMAP

**Eco Regions / RESOLVE** Cloud Score+ Pasquarella et al. CVPRW'23 Dinerstein et al. BioScience'17

**Analysis-ready Data** 

Rolf et al. Nature Comms'21

Dwyer et al. Remote Sensing'18

**Earth Obs.: Sentinel** 

**Earth Obs.: LandSat** 

Berger et al. RS of Env.'12