# Impact of Missing Views in Multi-view Model **RPTU** Predictions for Vegetation Applications

## Francisco Mena, Diego Arenas, Marlon Nuske, Andreas Dengel

University of Kaiserslautern-Landau & German Research Center for Artificial Intelligence

#### **1. Motivation**

- Multi-view learning (MVL) is crucial for modeling heterogeneous EO sources.
- EO data sources may not be available: remote sensors have a finite lifetime, satellite missions can fail.
- Re-training the model is not an option.

Our focus: **evaluate** how the predictions of different MVL models are affected.

#### 2. Methodology

We consider a **view** as all the features in a specific EO data source, and compare the following MVL fusion approaches [1]: > Input, Feature, Ensemble.

Missing views techniques explored: > Impute: Fill in the missing view with the



#### 4. Datasets & Results

- **CH-M** [2]: crop-type classification growing in a location (10 classes).
- **LFMC** [3]: predict the vegetation water per dry biomass in a location.
- average value from the training data.
- **Concatenate** as the merge function.
- Exemplar: Search for the missing view in the training data using the available views in a shared space (obtained with CCA embeddings).
- Ignore: Omit the missing views in the aggregation step of the fusion.
- Average as the merge function.

### **3. Experimental setting**

> 10-fold cross-validation with missing views in the validation fold.

Predictive quality assessment:

- $\succ$  Classification: Average accuracy (AA)
- $\succ$  Regression: Coef. of Determination (R2)

#### 6. Findings

- MVL models with ignoring techniques are the least affected by missing views:
  ➤ highest robustness: Ensemble-avg.
- 2. Impact of missing views is more severe in **regression** than classification tasks.
- 3. Missing **optical view** significantly affects MVL model predictions.

|      | Samples | Years       | Where  | Pixel | Temporal views | Static Views                                          |
|------|---------|-------------|--------|-------|----------------|-------------------------------------------------------|
| CH-M | 29642   | 2016 - 2022 | Global | 10 m  | Optical, Radar | Topographic                                           |
| LFMC | 2578    | 2015 - 2019 | USA    | 250 m | Optical Radar  | Topographic, land-cover<br>class ,canopy height, soil |

| <b>T1.</b> AA for different missing view cases on the CH-M. |                | No<br>Missing | Radar | Optical | Weather +<br>static | Radar +<br>weather+static | Optical +<br>weather+static |
|-------------------------------------------------------------|----------------|---------------|-------|---------|---------------------|---------------------------|-----------------------------|
| Impute                                                      | Input-concat   | 0.738         | 0.641 | 0.296   | 0.534               | 0.534                     | 0.142                       |
|                                                             | Feature-concat | 0.727         | 0.624 | 0.290   | 0.558               | 0.390                     | 0.159                       |
| Exemplar                                                    | Feature-cca    | 0.727         | 0.285 | 0.384   | 0.094               | 0.107                     | 0.100                       |
| Ignore                                                      | Feature-avg    | 0.726         | 0.674 | 0.542   | 0.582               | 0.529                     | 0.306                       |
|                                                             | Ensemble-avg   | 0.715         | 0.708 | 0.613   | 0.711               | 0.715                     | 0.523                       |

| <b>T2.</b> R2 for different missing views cases on the LFMC. |                | No<br>Missing | Radar | Optical | Static | Radar + Static | Optical + Static |
|--------------------------------------------------------------|----------------|---------------|-------|---------|--------|----------------|------------------|
| Impute                                                       | Input-concat   | 0.717         | 0.650 | 0.060   | 0.060  | 0.165          | -0.047           |
|                                                              | Feature-concat | 0.667         | 0.599 | 0.274   | 0.352  | 0.290          | 0.081            |
| Exemplar                                                     | Feature-cca    | 0.667         | +     | -0.260  | +      | +              | +                |
| Ignore                                                       | Feature-avg    | 0.683         | 0.618 | 0.142   | +      | +              | +                |
|                                                              | Ensemble-avg   | 0.312         | 0.292 | 0.243   | 0.407  | 0.392          | 0.239            |

## **On-going Work**

F1. Performance Robustness Score (PRS, [4]) allow relative analysis.
Predictive error with missing views relative to error with all views.

T3. Sensor dropout applied during training increase robustness.
Randomly drop (mask out) all features in a view.

| <b>T3.</b> AA for<br>CH-M. | No<br>Missing | Radar | Optical | Weather +<br>static | Radar +<br>weather+static | Optical +<br>weather+static |           |
|----------------------------|---------------|-------|---------|---------------------|---------------------------|-----------------------------|-----------|
| Input-concat               | 0.687         | 0.665 | 0.508   | 0.683               | 0.655                     | 0.277                       | <br> <br> |
| Feature-concat             | 0.659         | 0.612 | 0.510   | 0.591               | 0.515                     | 0.292                       | <br>      |
| Feature-avg                | 0.731         | 0.705 | 0.610   | 0.720               | 0.698                     | 0.455                       | <br> <br> |

#### **References**

[1] Garnot et al. 2022. Multi-modal temporal attention models for crop mapping from satellite time series.

- [2] Tseng et al. 2021. CropHarvest: A global dataset for crop-type classification.
- [3] Rao et al. 2020. SAR-enhanced mapping of live fuel moisture content.
- [4] Heinrich et al. 2023. Targeted adversarial attacks on wind power forecasts.



#### **F1.** PRS for missing views scenarios on the CH-M.