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ABSTRACT

Active imaging systems, particularly Synthetic Aperture Radar (SAR), offer no-
table advantages such as the ability to operate in diverse weather conditions and
provide day and night observations of Earth’s surface. These attributes are espe-
cially valuable when monitoring regions consistently obscured by clouds, as seen
in Northern Europe. One of the most recognized SAR constellations is Sentinel-1
(S1), known for providing imagery freely to the community. Despite this acces-
sibility, problems arise due to the inherent limitations of the spatial resolution of
S1 and the presence of speckle noise, which makes the data difficult to interpret.
Although there are several commercial SAR satellites offering on-demand high-
resolution data, their high costs hinder their use among remote sensing experts.
Motivated by the outlined advantages and limitations, this paper introduces a novel
deep learning-based methodology aimed at simultaneously reducing speckle noise
and enhancing the spatial resolution of S1 data. Contrary to previous works that
rely on a high-resolution satellite as ground truth (typically TerraSAR-X), we pro-
pose to use the same satellite in another operational mode as ground truth. Ac-
cordingly, the proposed method focuses on enhancing the spatial resolution of S1
Interferometric Wide Swath mode products from 10 to 5 m GSD by leveraging
S1 Stripmap mode as the ground truth for training the model. As a result, super-
resolved images duplicated the input spatial resolution, closing the gap between
S1 and commercial SAR satellites.

1 INTRODUCTION

Synthetic Aperture Radar (SAR) imagery is a fundamental source of information for monitoring tar-
gets on the Earth’s surface due to its ability to penetrate clouds and operate during both daytime and
nighttime, regardless of weather conditions Torres et al. (2012). However, due to its nature, SAR
data is strongly affected by speckle noise, which results from the coherent summation of echoes gen-
erated by elementary scatterers within the same resolution cell Lee et al. (1994). Consequently, SAR
images become challenging to interpret and utilize for both remote sensing experts and automated
tools.

Nowadays, there is a great deal of SAR constellations operated by both public and private compa-
nies. While public SAR constellations provide extensive global coverage at the expense of spatial
resolution, private ones offer very high-resolution products with shorter revisit times, making inter-
pretation easier Curlander & McDonough (1991). However, the prohibitive costs associated with
private constellations hinder remote sensing experts from utilizing them.
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Sentinel-1 (S1), operated by the European Space Agency as part of the Copernicus program,
stands out as one of the most distinguished SAR constellations. S1 provides data through a dual-
polarization C-band SAR instrument operating in four different modes, each designed to capture
data with varying spatial resolutions and coverage to meet diverse Earth observation needs Filipponi
(2019). Nevertheless, despite the ease of access to its data, S1 also has some limitations, such as low
spatial resolution and significant speckle noise, adding complexity to the processing and interpreta-
tion of its products.

There are many works in the literature aiming at reducing or removing speckle noise from SAR im-
ages, enhancing their visual quality, and improving the accuracy of subsequent image analysis tasks
Fracastoro et al. (2021). Traditionally, the majority of these works fall into two categories: Bayesian
and non-Bayesian methods Singh et al. (2021). While Bayesian methods are grounded in a prob-
abilistic framework, allowing for modeling uncertainty and incorporating contextual information,
non-Bayesian methods are often faster and simpler, relying on deterministic filtering techniques.

Nevertheless, recently, despeckling tasks have benefited from advancements in deep learning, clearly
outperforming established approaches. Chierchia et al. (2017) employed a convolutional neural
network trained using a residual learning strategy with synthetic SAR data. This synthetic SAR
data was generated by injecting single-look speckle in amplitude format into optical images. A
similar approach was followed by Lattari et al. (2019), who pre-trained a modified U-Net network
using synthetic SAR data generated by simulating speckle on optical imagery, employing a Rayleigh
distribution. In contrast to the aforementioned works, Dalsasso et al. (2020) pre-trained their model
using, as ground truth, an image obtained by temporal and spatial filtering of a stack of multiple
SAR images. Other approaches focus on preventing the appearance of artifacts while preserving
important details such as edges. This is the case of Wang et al. (2017), who proposed combining
standard restoration losses with Total Variation regularization to encourage smoother results. It
must be noted that, although these approaches enhance the visual quality of the images by reducing
speckle noise, they do not improve spatial resolution.

To increase the spatial resolution, the majority of works within SAR super-resolution literature are
based on Generative Adversarial Networks (GANs) Goodfellow et al. (2014). Wang et al. (2018)
trained an SRGAN generating low-resolution images by downsampling TerraSAR-X counterparts
by a factor of four. Zheng et al. (2019) followed a similar approach, training their GAN-based
network with pairs of TerraSAR-X and MSTAR images. Similarly, Ao et al. (2018) designed a
Dialectical GAN to super-resolve S1 images by transferring the style of TerraSAR-X. However,
since these methods are based on generative networks, models may easily hallucinate or generate
synthetic artifacts having a negative impact on the performance of downstream tasks. Moreover,
working with undersampled versions of the original input data is known to achieve suboptimal re-
sults, whereas working with image pairs coming from different satellites involves challenges due to
their differences regarding corregistration, operating frequency, polarizations, swath width and so
on Galar et al. (2020).

To overcome these problems, we propose to exploit the operational modes of S1, taking advantage of
Stripmap (SM) mode, where S1 achieves a resolution of 5× 5 m GSD, compared with the standard
working mode of Interferometric Wide Swath (IW) working at 5 × 20 m GSD. This way, we can
form pairs of images coming from the same satellite to train standard single-image super-resolution
networks, avoiding generative adversarial training. Note that finding pairs of IW and SM images is
not straighforward as SM mode is not available in all locations.

2 METHODOLOGY

The super-resolution model is trained in two phases: pre-training and fine-tuning. Firstly, the model
is pre-trained, either with synthetically generated SAR data derived from optical images or with
aggregated SAR time-series data. After pre-training, the model is fine-tuned using S1 SM data.

2.1 DATASET GENERATION

We consider synthetic SAR data for model pre-training and real SAR data for fine-tuning.
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Pre-training dataset: For the pre-training phase, a multi-temporal dataset of pairs of S1 and
Sentinel-2 (S2) optical images has been used. This dataset comprises a selection of 44 cities spread
across the Spanish territory Ayala et al. (2021). Synthetic SAR data has been generated from both
S2 optical images and S1 time-series following different strategies, as described in Section 2.3.

Fine-tuning dataset: For the fine-tuning phase, we generated a curated dataset of pairs consisting
of low-resolution and high-resolution SAR data. In contrast to other works within the literature, we
propose to use the same sensor, S1, in different operational modes to create these pairs. While the
IW mode offers wide coverage at a fixed spatial resolution of 5 × 20 m GSD, the SM mode pro-
vides higher spatial resolution (5 × 5 m GSD), making it ideal for detailed observations of specific
regions. It must be noted that the latter is only used for small islands and upon request for extraor-
dinary events, such as emergency management. However, between 2017 and 2020, a few S1 SM
acquisitions over land were made in Europe, Asia and Africa.

The fine-tuning dataset was generated by selecting pairs of S1 IW and SM images. The selection
process focused on continental areas, considering SM beams ranging from S3 to S6 to match the
incidence angle range of the IW products. It must be noted that only the ascending flight direction
mode and dual vertical polarizations (VV+VH) have been considered to maximize coverage. To
enhance diversity and prevent the overrepresentation of highly homogeneous areas, a careful visual
inspection was conducted. As a result, the dataset comprises four areas of interest, covering a total
area of 25,871 km2.

2.2 MODEL ARCHITECTURE

We opted for using the Second-Order Attention Network proposed by Dai et al., for Single-Image
Super Resolution of RGB images Dai et al. (2019). This architecture allows for more powerful
feature expression and feature correlation learning by leveraging two elements: the second-order
channel attention module and the non-locally enhanced residual group structure. In our case, we
have chosen to use 20 residual groups, each comprising 10 residual blocks, based on preliminary
experiments.

2.3 MODEL PRE-TRAINING

As described in Section 1, there are different ways to pre-train models depending on whether the
synthetic SAR data is generated from optical data or SAR time-series. Both strategies are consid-
ered:

From optical data: Synthetic SAR data is generated by injecting speckle and Rayleigh noise into
S2 optical images, following the approaches of Chierchia et al. (2017) and Lattari et al. (2019),
respectively. Specifically, noise was injected into S2 grayscale images, which were created by aver-
aging the values of the Red, Green, and Blue bands to generate the low-resolution input image. On
the other hand, the noise-free S2 grayscale images were upsampled by a factor of 2 to generate the
high-resolution ground truths.

From SAR time-series: Synthetic SAR data is generated by performing multi-temporal multilook-
ing to reduce speckle noise, following the approach of Dalsasso et al. (2020). This entails combining
the intensity of images acquired at different dates, assuming that no changes occurred. In this regard,
the dataset described in Section 2.1 comprising stacks of 4 S1 IW images has been used. Specifi-
cally, an arbitrary time step is selected as the low-resolution input image, while different aggregation
strategies are employed to combine the 4 time steps (upsampled by a factor of 2 beforehand) to gen-
erate the high-resolution ground truths. In this study, mean and median operations are considered as
aggregation strategies.

To conduct the pre-training, a consistent training schema was followed across all approaches. Specif-
ically, models were trained for 100 epochs, taking batches of 128 24 × 24 low-resolution samples.
For the loss function, a combination of the L2 and Total Variation losses has been chosen as sug-
gested in Wang et al. (2017), to prevent the appearance of artifacts while preserving important de-
tails. The loss has been minimized using the OneCycleLR scheduler Smith & Topin (2018) with a
maximum learning rate of 1×10−3. Instead of taking the last epoch model for fine-tuning, we opted
for the one that exhibited superior performance during validation.
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2.4 MODEL FINE-TUNING

After the pre-training phase, a fine-tuning step is applied. In this case, the dataset consisted of
spatially and temporally coregistered pairs of S1 images corresponding to the IW and SM modes,
as described in Section 2.1. To ensure radiometric normalization between images from both modes,
we aligned their histograms following Galar et al. (2020). Regarding the training setup, the only
deviation from the one employed in the pre-training (Section 2.3) is the adjustment of the number
of epochs, which was set to 30.

3 RESULTS AND DISCUSSION

The proposed models have been compared with the baseline model that enhances resolution through
the application of a bicubic interpolation algorithm, as well as the model resulting from training end-
to-end with the IW and SM pairs. The performance has been assessed using commonly used metrics
in super-resolution and image restoration tasks, including the Root Mean Square Error (RMSE), the
Structural Similarity Index Measure (SSIM), and the Peak Signal-to-Noise Ratio (PSNR) Dalsasso
et al. (2020). All the results are presented in Table 1.

As it can be observed, although all the models except the baseline perform similarly in terms of
SSIM, the model pretrained by injecting Rayleigh noise into S2 optical images outperforms the
others in terms of RMSE and PSNR. This may indicate that the SSIM metric is not an adequate
measure to be used in SAR super-resolution scenarios.

Experiment ↑ SSIM ↓ RMSE ↑ PSNR (dB)

Baseline (bicubic) 64.61 0.5711 28.45
End-to-end 75.33 0.3419 30.68
PT. S2 + Speckle 75.31 0.3236 30.92
PT. S2 + Rayleigh 75.33 0.2608 31.86
PT. S1 + Mean 75.36 0.3165 31.02
PT, S1 + Median 75.32 0.3254 30.90

Table 1: Comparison between different S1 super-resolution approaches.

The quality of the super-resolution has been assessed qualitatively in Figure 1, where it is compared
with the baseline bicubic interpolation algorithm and the ground truth. Additionally, a reference
aerial image has been included for validation purposes. Overall, the proposed model enhances the
clarity and sharpness of the image while maintaining a natural appearance, without introducing
synthetic artifacts. Consequently, the image looks more visually pleasing and becomes easier to
interpret.
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