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ABSTRACT

Ecosystem respiration (Reco) represents a significant component of the global
carbon cycle, and accurate characterization of its dynamics is essential for a com-
prehensive understanding of ecosystem-climate interactions and the impacts of
climate extremes on the ecosystem. In this paper, we present a novel data-driven
and physics-aware method for estimating Reco dynamics using the dynamic mode
decomposition with control input (DMDc), an emerging tool for analyzing non-
linear dynamical systems. The proposed model represents Reco as a state space
model with an autonomous component and an exogenous control input. The con-
trol input can be any ecosystem driver(s), such as air temperature, soil temperature,
or soil water content. This unique modeling approach allows controlled interven-
tion to study the effects of different inputs on the system. We further discuss using
time delay embedding of both components to characterize Reco dynamics. Exper-
imental results using Fluxnet2015 data show that the prediction accuracy of Reco
dynamics achieved with DMDc is comparable to state-of-the-art methods, mak-
ing it a promising tool for analyzing the dynamic behavior of different vegetation
ecosystems on multi-temporal scales in response to different climatic drivers.

1 INTRODUCTION

Carbon losses from ecosystems affect climate change (Melillo et al., 2017). Ecosystem respiration
(Reco), the sum of autotrophs (plants) and heterotrophs (bacteria, fungi, and animals) respiration,
represents a significant component of the global carbon cycle. Accurate estimation of Reco dynam-
ics is necessary for a better understanding of ecosystem-climate interactions and climate extremes’
impact on ecosystems. This paper presents a data-driven yet physics-aware method for estimating
Reco dynamics using the dynamic mode decomposition with control input (Proctor et al., 2016), an
emerging tool for analyzing nonlinear dynamical systems.

Ecosystem respiration is typically described as an exponential function of temperature based on the
law of thermodynamics (Lloyd & Taylor, 1994). However, this exponential relationship is defined
based on some parameters, such as temperature sensitivity, which are assumed to remain constant.
Several studies have pointed to the dependence of these parameters on other drivers of ecosystems
(Mahecha et al., 2010), which could lead to either over- or under-estimation of Reco depending
on the temperature range. Regression models partially compensate for such problems by using
temporally moving windows to estimate the model’s parameters (Reichstein et al., 2012).

The eddy covariance (EC) technique is widely used to measure the net ecosystem exchange (NEE),
which is the difference between the total CO2 release due to all respiration processes and the gross
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carbon uptake by photosynthesis (GPP) (Baldocchi et al., 2001). The two CO2 fluxes, Reco and GPP,
are derived using what is known as NEE partitioning methods (Lloyd & Taylor, 1994; Reichstein
et al., 2005; Pastorello, 2020). These approaches use NEE measurements to fit physiologically based
nonlinear relationships to estimate GPP and Reco using meteorological drivers. These functional
relationships are either a light-response-based function linking global incoming radiation and GPP
(Gilmanov et al., 2003) or respiration functions based on temperature (Reichstein et al., 2012). These
methods are adopted as standard processing tools in the Fluxnet community (Pastorello, 2020) and
are referred to as daytime (DT) and nighttime (NT) methods, respectively.

Recently, the capabilities of deep neural networks have been used for modeling Reco dynamics
(Tramontana et al., 2020; Trifunov et al., 2021). These approaches provide data-driven equation-
free estimates of Reco with the flexibility to include other meteorological and biological drivers
affecting Reco. Despite their improved performance, these methods require sufficient training data
and experimental tuning of the hyper-parameters of the deep networks used. Hence, the trained
model can not consider short-term variations in ecosystem respiration.

Koopman operator (Koopman, 1931) enables the transformation of finite-dimensional nonlinear sys-
tem dynamics to an infinite-dimensional linear dynamical system. However, finding the Koopman
operator’s eigenfunctions remains a significant obstacle to its implementation. Dynamic mode de-
composition (DMD) is a simple numerical algorithm approximating the Koopman operator with
a best-fit linear model that advances measurements from one time step to the next (Mezić, 2005;
Schmid & Peters, 2010; Rowley et al., 2009; Brunton et al., 2017). It is an equation-free system
identification method where the underlying dynamics of the system are learned from snap-shots in
time of measurement data. DMD decomposes system dynamics into temporal modes whereby each
mode represents a fixed oscillation frequency and decay/growth rate. The extension of DMD to
dynamical systems with control inputs is the dynamic mode decomposition with control (DMDc)
(Proctor et al., 2016). DMDc provides a robust framework for analyzing the behavior of complex dy-
namical systems under the influence of external inputs and has been successfully applied in diverse
nonlinear dynamical systems, e.g., fluids dynamics and neuroscience.

In this paper, we extend our initial work (Shadaydeh et al., 2022) and present a novel data-driven
Reco estimation approach that can also serve as an NEE partitioning method using DMDc. The sys-
tem state Reco is presented as a state space dynamical model with an autonomous component and an
exogenous component that serves as a control input function. The control input to the system could
be air temperature (Tair) per the thermodynamics-based exponential function and/or other observed
drivers such as soil temperature, soil water contents (SWC), etc. Such modeling of Reco allows
disentangling the exogenous effect of the control input, e.g., Tair, from the autonomous dynamics
of Reco. Subsequently, it facilitates intervention studies with different control inputs to study their
effect on the ecosystem. To deal with unobserved drivers of Reco other than temperature or any
used control input, we use time delay embedding (TDE) of the history of the system’s state and
control input. According to Takens Theory (Takens, 1981), embedding the state history guarantees
under certain conditions that the system will learn the trajectories of the original system. The model
training is performed in a sliding temporal window on night-time NEE (GPP ≈ 0) of Fluxnet2015
data (Pastorello, 2020). Reco day- and nighttime values, within forecast intervals that span one to
several days, are then predicted using the trained model with the future values of the control input(s).
The performance of the DMDc with different control inputs, namely Tair and SWC, is compared to
DT and NT NEE partitioning methods reported in the Fluxnet2015 data. The impact of TDE on the
performance of the proposed DMDc approach is also investigated for Reco’s long-term forecasting.

2 METHODOLOGY

2.1 DYNAMIC MODE DECOMPOSITION WITH CONTROL (DMDC)

DMD (Schmid & Peters, 2010) analyzes the relationship between pairs of measurements from a
dynamical system. The measurements, x(k) and x(k + 1), where k indicates the temporal iteration
from a discrete dynamical system, are assumed to be approximately related by a linear operator A
such that the relation x(k + 1) ≈ Ax(k) holds for all pairs of measurements k, where x ∈ Rn

and A ∈ Rn×n. Let X = [ x(1) x(2) · · · x(M − 1) ] and the time-shifted matrix X′ =
[ x(2) x(3) . . . x(M) ] where M is the total number of snapshots. This relationship can
be described in a matrix form as X′ ≈ AX. The best-fit linear operator is computed as A =
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X′X† where † is the Moore-Penrose pseudoinverse which is computed using the singular value
decomposition (SVD) of X. The eigendecomposition of A yields the eigenvalues and eigenvectors
(modes) that can be used for future state prediction. Specifically, let ϕj and λj be the jth eigenvector-
eigenvalue pair of A, x(k) at any time k is defined as

x(k) =

N∑
j=1

bjϕjλ
k
j (1)

where bj denotes the weights of the modes in the initial state x(0).

DMDc (Proctor et al., 2016) extends the DMD to dynamical systems with control inputs. The goal of
DMDc is to analyze the relationship between a future system measurement x(k+1) with the current
measurement x(k) and the current control input u(k) such that x(k+1) ≈ Ax(k)+Bu(k), where
x(k) ∈ Rn,u(k) ∈ Rl,A ∈ Rn×n, and B ∈ Rn×l. Let Υ = [ u(1) u(2) · · · u(m− 1) ].
Utilizing the three data matrices, DMDc is focused on finding best-fit approximations to the map-
pings A and B such that

X′ ≈ AX+BΥ (2)

holds for all trios of data. The augmented snapshot matrix [X;Υ] is decomposed using SVD to
extract the dynamic modes of the system, including the effects of the control inputs. Once the
dynamic modes are identified, they can be used to reconstruct the system’s evolution under the
influence of control inputs. The DMDc steps are summarised in A.1.

2.2 MODELING THE DYNAMICS OF RECO USING DMDC

In Eq. 2, let the state of the system X and the control input Υ be two vectors which constitute of
M nights measurement of nighttime NEE (NEEnight) and the control input, e.g., Tair, respectively.
Specifically, for Tair as a control input, we define

X = [ NEEnight(t1) NEEnight(t2) · · · NEEnight(tM−1) ]

Υ = [ Tair(t1) Tair(t2) · · · Tair(tM−1) ] . (3)

Here, NEEnight(ti), i = 1, · · · ,M refers to a vector of nighttime measurement of the day ti. The
matrices A and B in Eq. 2 are identified using the steps of the DMDc algorithm summarized in A.1.

The dynamical model of Reco is learned using the DMDc method applied to the values of NEEnight
(when photosynthesis, and therefore GPP, is assumed to be 0) and the selected control input, e.g.,
Tair, using a temporal sliding window of size M . The trained state space model is then used to
forecast day and night time values of Reco using the day and night time values of the control input
within the forecast horizon, which might span one to several days.

2.3 TIME DELAY EMBEDDING (TDE) FOR CHARACTERIZATION OF RECO DYNAMICS

Time delay embedding is a classical approach for dealing with partial state information. Most often,
we can observe only partially the drivers affecting the state of the observed system, i.e., the ecosys-
tem respiration system in this study. This method augments a state x with its history. According to
Takens theory (Takens, 1981), under mild conditions on the observables, the dynamics of the aug-
mented state are guaranteed to be diffeomorphic to the dynamics of the original state x, provided
that the embedding dimension N satisfies N ≥ 2n + 1, where n is the dimension of the state. One
method to obtain the TDE dimension N is by computing the SVD of a Hankel matrix (Brunton et al.,
2017). The Hankel matrix is formed by stacking the columns of the snapshot matrices X with delay
embedding, e.g., the Hankel matrix of NEEnight in A.2. Another advantage of using TDE in the
proposed method is that it allows for learning Reco dynamics from short data as it compensates for
using advanced measurement in time. This is relevant as it enables ecosystem forecasts to consider
very transient factors affecting short-term variations in the system dynamics, such as perspiration.

The singular values of the Hankel matrix capture the energy or variance associated with each of
the DMDc modes (Brunton et al., 2017). Thus, the number of dominant modes necessary for Reco
forecast can be estimated using the rank of the Hankel matrix of NEEnight. Analyzing the spread
of singular values of the Hankel matrix also provides valuable insights into the underlying system’s
dynamics. A well-structured spread of singular values indicates a well-observable or predictable
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Figure 1: Singular values of the Hankel matrices H of NEEnight and Tair in different Fluxnet sites.
The spread of the singular values is an indicator of the predictability of the system. The number
of distinct singular values is the number of distinct dynamic modes. We can observe four to six
dominant modes depending on the vegetation type and climate of the site location.

system. Smaller singular values indicate significant noise in the system. Comparing the spread of
singular values of different sites can help characterize the differences in Reco dynamics in different
vegetation and average temperature sites, as shown in the following section.

3 EXPERIMENTAL RESULTS AND DISCUSSION

We used the half-hourly EC Fluxnet2015 data (Pastorello, 2020) measured at Fluxnet sites with
different vegetation types and average temperature to investigate the performance of our method
and the impact of different control inputs, e.g., Tair and SWC, on Reco dynamics. In particular,
we selected five different forests of various types: Deciduous Broadleaf Forests (DBF), Evergreen
Needleleaf Forests (ENF), Mixed Forests (MF), as well as three Grassland (GRA) sites.

Since the direct measurement of daytime Reco is not available, the root mean square error (RMSE)
between the Reco forecast values and NEEnight (ground-truth Reco assuming GPP=0 at night)
during the nights of the forecast interval is used as a validation measure. We used the variable
’Night’ of the Fluxnet data as a reference for nighttime. The method is applied on a temporal sliding
window over the last two years of several sites of Fluxnet 2015 data from May to September (January
to April for the southern hemisphere). Only good quality data with at least 80% of quality flag Q < 2
is used. All variables were min-max normalized and then set to the range [−1, 1]. We compare the
performance of the proposed method using DMDc with and without control input (DMD) to NT and
DT Reco values of the Fluxnet data.

Figure 1 shows the singular values of the Hankel matrices of NEEnight and Tair for different vege-
tation sites. In most sites, we can observe four to six dominant modes. Results of RMSE of one day
forecast using five nights for training are given in Table 1. These results indicate a comparable per-
formance of the proposed method to DT and NT methods. The spread of the singular values of the
NEEnight Hankel matrix of the different sites shown in Figure 1 can explain the prediction accuracy
of our method. We can notice that sites with well-spread singular values, such as DE-Hai (DBF)
and BE-Vie(MF), are more predictable, and hence our proposed DMDc-based method outperformed
DT and NT methods. However, for sites with less structured singular values, such as IT-Ro1(GRA)
and AU-Stp (GRA), we can observe a slightly lower accuracy of DMDc. This is expected since the
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Table 1: Comparison of different methods’ nighttime Reco forecasts to the ground truth NEEnight. We show
the NEEnight estimation RMSE (µmol CO2 m−2 s−1) metric for all methods and vegetation types. The
performance of DT and NT NEE partitioning methods are compared to those of DMD and DMDc when using
five nights of NEEnight for training and one-day Reco forecast, i.e., validation on the next night. The best
results are in bold.

Method DE-Hai DE-Obe BE-Vie IT-Ro1 FY-Hyy AU-Stp US-SRG IT-MBO
(Control Input) (DBF) (ENF) (MF) (DBF) (ENF) (GRA) (GRA) (GRA)
Fluxnet NT Reco 0.192 0.190 0.143 0.147 0.204 0.096 0.163 0.127
Fluxnet DT Reco 0.251 0.209 0.173 0.126 0.221 0.091 0.122 0.165
DMD 0.195 0.222 0.140 0.144 0.191 0.098 0.174 0.130
DMDc(Tair) 0.182 0.207 0.137 0.145 0.188 0.099 0.175 0.126
DMDc(SWC) 0.191 0.213 0.141 0.145 0.197 0.098 0.171 0.127

Table 2: Comparison of different methods’ nighttime Reco forecasts to the ground truth NEEnight. We show
the NEEnight estimation RMSE (µmol CO2 m−2 s−1) metric for all methods and vegetation types. The
performance of DMD and DMDc with Tair and SWC as control inputs and different embedding dimension N
are compared using two weeks of training data and two weeks of Reco forecast, i.e., validation on the nights of
the next two weeks. The best results are in bold.

Method (Control input, DE-Hai DE-Obe BE-Vie IT-Ro1 FY-Hyy AU-Stp US-SRG IT-MBO
embedding dimension) (DBF) (ENF) (MF) (DBF) (ENF) (GRA) (GRA) (GRA)
DMD 0.216 0.323 0.199 0.193 0.279 0.114 0.242 0.171
DMDc (Tair) 0.235 0.301 0.189 0.186 0.274 0.115 0.243 0.161
DMDc-TDE (Tair, N=4) 0.230 0.297 0.191 0.188 0.271 0.115 0.240 0.162
DMDc-TDE (Tair, N=6) 0.231 0.294 0.190 0.190 0.260 0.117 0.236 0.163
DMDc(SWC) 0.219 0.326 0.198 0.195 0.296 0.115 0.230 0.180
DMDc-TDE (SWC, N=4) 0.216 0.316 0.194 0.204 0.281 0.116 0.225 0.180
DMDc-TDE (SWC, N=6) 0.219 0.315 0.198 0.192 0.279 0.122 0.219 0.181

low spread of singular values indicates the absence of distinct modes, resulting in less predictability.
The low spread of singular values could result from significant noise in the system or slow climate
dynamics in the site location. It should be noted, however, that the DMD method on its own, with-
out any control input, can still produce reasonable accuracy, which is comparable to the DT and NT
methods in some sites. Our results also show a promising performance in capturing the influence
of different ecosystem drivers. We can notice that SWC is a better predictor of Reco dynamics for
grasslands or higher average temperature sites, while Tair is a better predictor for forest sites.

In a second set of experiments, we aim to investigate the impact of using time delay embedding to
improve the accuracy of longer Reco forecast intervals. To this end, we train the DMDc state-space
model with two weeks of NEEnight measurement data and forecast the next two weeks. Table 2
shows the results of DMD and DMDc for two different control inputs, Tair and SWC, and two TDE
dimensions, N=4 and 6. These two embedding values are selected based on the number of distinct
singular values we can observe in Figure 1. Results indicate that, on the one hand, Tair is a better
long-term predictor in most studied sites. On the other hand, we can observe that TDE enhanced the
prediction accuracy with SWC as the control input for all studied sites.

4 CONCLUSIONS

We proposed a data-driven model for analyzing ecosystem respiration dynamics using DMDc. Such
modeling of Reco allows disentangling the exogenous effect of the control input, e.g., Tair, from
the autonomous dynamics of Reco. Subsequently, it facilitates interventional studies on the control
input to study its effect on the ecosystem. The performance of the DMDc with different control
inputs, namely Tair and SWC, is compared to DT and NT NEE partitioning methods reported in
the Fluxnet2015 data for different vegetation sites. Our results show a promising performance of
our approach in the characterization of Reco dynamics and in capturing the influence of different
ecosystem drivers, making it a promising tool for analyzing the dynamic behavior of different veg-
etation ecosystems in response to climate change. Experimental results also showed that for most
sites, time delay embedding of different ecosystem drivers could improve long-term prediction accu-
racy. Current research efforts are focused on implementing the proposed approach on multitemporal
scales to improve its long-term forecast accuracy.
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A APPENDIX

A.1 MAIN STEPS OF THE DMDC METHOD PROCTOR ET AL. (2016)

1. Collect the system measurement and control snapshots
2. Form the matrices X,X′, and Υ
3. Stack the data matrices X and Υ to construct the matrix Ω
4. Compute the SVD of Ω thereby obtaining the decomposition
Ω ≈ ŨΣ̃Ṽ∗ with truncation value p.
5. Compute the SVD of X′, thereby obtaining the decomposition
X′ ≈ ÛΣ̂V̂∗ with truncation value r
6. Compute the following:

Ã = Û∗X′ṼΣ̃−1Ũ∗
1Û (4)

B̃ = Û∗X′ṼΣ̃−1Ũ∗
2 (5)

7. Perform the eigenvalue decomposition

ÃW = WΛ (6)

8. Compute the dynamic modes of the operator A.

Φ = X′ṼΣ̃
−1

Ũ∗
1ÛW (7)

A.2 HANKEL MATRIX OF NEENIGHT

The Hankel matrix of NNnight is defined as

H=



NEEnight(t1) NEEnight(t2) · · · NEEnight(tM−N)

NEEnight(t2) NEEnight(t3) · · · NEEnight(tM−N+1)

...
...

. . .
...

NEEnight(tN) NEEnight(tN+1) · · · NEEnight(tM)


(8)
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