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ABSTRACT

Neural networks have transformed remote sensing, making it easier to derive in-
sights from satellite images for various Earth Observation (EO) applications. Yet,
their potential is often limited by the lack of labeled data. Traditional data aug-
mentation methods, while attempting to address this, require significant manual
input and lack visual diversity, compromising model performance. We introduce
an innovative data augmentation strategy that automates the generation and inte-
gration of objects into satellite imagery, enhancing datasets for object detection.
Our method notably improves car detection model performance, surpassing tradi-
tional augmentation techniques.

1 INTRODUCTION

Recent improvements in satellite sensor technology and processing power, along with advancements
in Computer Vision (CV), have expanded the popularity and applications of satellite imagery. De-
spite these advances, the practical use of object recognition and classification models in satellite
imagery is often hindered by a lack of labeled data and variability, which do not fully represent the
diversity found in real-world settings. This scarcity and limited representation significantly affect
model performance and leave many EO challenges unaddressed.

Data augmentation (DA) has become one of the approaches to deal with the lack of sufficient
amounts of labeled data [Shorten & Khoshgoftaar| (2019). Image-based DA includes conventional
geometric transformations such as rotation, flipping, and cropping or zooming |[Hao et al.| (2023) as
well as more sophisticated methods that exploit the multi-dimensional aspect of the data [Viskovic
et al.[(2019),Persson et al.|(2018)),I1larionova et al.|(2021a). Some techniques exploit the capabilities
of generative models [Jain et al.[(2021)) [Lin et al.[|(2017)) |Alzahem et al.| (2023). Despite the perfor-
mance improvement reported when using image-based DA techniques for EO, the main limitation,
namely, the lack of variability remains one of the key challenges Nesteruk et al.| (2022).

To address this limitation, object-based DA techniques were introduced focusing on individual ob-
jects instead of entire images and allowing more control of the synthetic images. Traditional meth-
ods in this category include copy-paste |I[llarionova et al.|(2021b) and 3D object rendering |Yan et al.
(2019) techniques. The main limitation of them though is that the former generates limited visual
object diversity, while the latter requires significant manual effort and expertise to create 3D models
of every object often unrealistic scenes. To address object blending within the scene, Martinson
et al.|(2021) combines a 3D object rendering process with a domain adaptation step.

Another category of object-based DA uses Generative Adversarial Networks (GANs). Despite im-
proved performance on various CV tasks|Huang et al.|(2021), these approaches remain constrained
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by the mode collapse problem of GANs Brock et al.|(2019) and their limited generation diversity
compared to likelihood models |[Nash et al.[(2021)Child|(2021).

Diffusion models [Dhariwal & Nichol| (2021)) (DMs), a subset of likelihood models, are gaining at-
tention for image generation in various domains with a limited focus on EO tasks e.g. in|Czerkawski
& Tachtatzis| (2023). While not surpassing other techniques in terms of conventional performance
metrics, the method yielded visually convincing results, especially for the inpainting of small areas.
Another work involving DMs with EO data is the Remote Sensing Fake Sample Generation RSFSG
framework |Yuan et al.| (2023)). Conditioned on masks describing an aerial scene, their fine-tuned
model was able to generate high-quality output images. Despite the quality of the generation, this
approach is of less benefit for data augmentation techniques, where we want to duplicate a specific
object to resolve an imbalance in the dataset. In this case, masks of the object have to be manually
added to the scene in a way such as that harmony is maintained. Overall, object-based DA for EO
is considered to be still a new field of research that requires attention.Current approaches either lack
diversity, need a lot of manual effort or/and are limited by low image resolution.

In this work, we are filling this gap by introducing an automated object-based data augmentation
method tailored to satellite imagery. Using state-of-the-art image generation models, we provide an
approach that produces high-resolution labeled data with high visual diversity. Automation offers
significant benefits by reducing manual effort, cutting costs, and saving time.

2 METHODOLOGY

Our approach adds synthetic objects into satellite images by inpainting masked areas, suggested by
an object placement module, with objects generated by an object generation module for realism and
diversity. Inputs include satellite images and text prompts for the object and its background. The
proposed approach is illustrated in Consider a road with a car as an example. “Road”
serves as input for placement and ”Car” for generation. The result is the original image with a
synthetic car on a road, assuming the former contains a road. We elaborate on both modules below.
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Figure 1: Overview of the data augmentation pipeline

OBJECT PLACEMENT

The object placement module determines the optimal location and size for inserting an object into an
image, using a bounding box (BBox). It consists of a region proposer to identify the right area based
on background type and a BBox generator for creating several non-overlapping BBoxes in that area.
Users have the option to set the object size, increasing the module’s adaptability and precision in
object positioning.

For the region proposer, an open-vocabulary segmentation model Zhang et al.|(2023a) is used. This
model takes as input a textual prompt describing the region to be segmented - a possible background
on which the object can be placed (e.g. aroad, a lake, etc). It outputs a mask that envelops the region.
In this work, we explored two models for the segmentation of regions on satellite images. The first
model, Grounded-Segment-Anything (GSAM) Ren et al.[ (2024)), uses a two-stage segmentation
approach: an open-vocabulary object detector [Liu et al.| (2023) to provide a visual prompt in the
form of a Bounding Box (BBbox) to a promptable segmentation model called Segment Anything
(SAM) Kirillov et al.| (2023). The second model we consider is Segment Everything Everywhere
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All at Once Model (SEEM), which is another state-of-the-art open vocabulary segmentation model
that performs segmentation in a single step.

OBJECT GENERATION

For object generation, we use Stable Diffusion (SD) [Rombach et al] (2022), a pre-trained latent
diffusion model with text-conditioning. To address the domain gap between SD training data and
satellite images, we fine-tuned SD with ControlNet|[Zhang et al.| (2023b)) . This enables SD to learn
new generation conditioning. Specifically we chose canny edges for conditioning to ensure top
views of objects.

To generate an object, we follow an inpainting method similar to the one in|Czerkawski & Tachtatzis|
(2023)). Specifically, we train ControlNet with a basic SD and combine it with an SD inpainting
(SDI) model during inference. This avoids direct fine-tuning of ControlNet with SDI, which is more
computationally expensive. The proposed pipeline and an inference example are shown in[Figure 2]
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Figure 2: A pipeline for the proposed conditioned inpainting using ControlNet and SDI as well as
an example of a generated object (car)

3 EVALUATION AND RESULTS

To evaluate the performance of the proposed method and its components, we conducted multiple
experiments presenting results for the object category cars. This object category exhibits significant
visual diversity in form and color and is often required to be detected in many practical EO appli-
cations. At first, we evaluate the performance of the object generation and context-aware object
placement modules. After that, we investigate how synthetically generated data is affecting the per-
formance of a detection model. For all the experiments, we provide a link to a GitHub repositor
with the source code and references to datasets.

EXPERIMENT 1: OBJECT PLACEMENT

In this experiment, we evaluate open vocabulary segmentation models with respect to their ability
to segment specific backgrounds within satellite images. We evaluate the performance of the intro-
duced earlier GSAM and SEEM segmentation models based on the Intersection-over-Union (IoU)
metric, precision, and recall. The Domain Adaptive Semantic Segmentation (LoveDa) dataset is
used due to high-resolution images for both rural and urban areas. To guide the segmentation of the
LoveDa dataset, its object classes are iteratively passed to the segmentation models as text prompts
e.g. Road or Barren.

Table 1: Performance metrics for GSAM and SEEM across segmentation categories

Category GSAM | SEEM

IoU  Precision Recall | IoU Precision Recall
Agriculture  0.29 0.30 0.84 | 0.21 0.42 0.52
Barren 0.04 0.05 0.81 0.09 0.22 0.76
Building 0.12 0.15 0.75 | 0.21 0.55 0.80
Forest 0.09 0.10 0.84 | 0.21 0.58 0.53
Road 0.15 0.21 0.62 | 0.19 0.76 0.51
Water 0.19 0.28 0.65 | 0.30 0.68 0.50

IoU metrics in indicate both models face challenges in background segmentation, but IoU
might not fully capture the region proposer’s performance, given its focus on pixel precision. SEEM

Uhttps://github.com/flypixai/pyxel-augment
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shows strong results in precision for Road, Water, and other classes, leading to its selection for
region proposal due to its conservative segmentation confirmed by recall metrics. The variations in
performance can be attributed to differences in the architectures of the two models, their approaches
to handling prompts, and the distinct segmentation tasks they were trained on. Our method utilizes
SEEM for proposing regions but its segmentation performance across categories could restrict its
applicability.

EXPERIMENT 2: OBJECT GENERATION

In this experiment, we evaluate the object generation quality using density and coverage met-
ricsNaeem et al.|(2020). We calculate them by analyzing synthetic and real images in feature space,
using the K-nearest algorithm to find neighbours for real images. Image fidelity (density) is deter-
mined by the presence of real samples in these neighborhoods, while diversity (coverage) measures
the proportion of real samples with at least one synthetic sample in their neighborhood. To fine-tune
ControlNet for generating small objects such as cars, we utilized a drone dataset from Medina City
(Medina-34), labeled with 34 object types, focusing on cars for this study. The dataset, publicly
available, was used to fine-tune ControlNet with data points including a target image (cropped car),
a source image (car’s canny edges), and a text prompt describing the car’s top view in satellite im-
agery. The training dataset contains 600 car samples. The model was trained for 34 epochs with a
learning rate of 1 x 10~5. A batch size of 2 and a gradient batch accumulation of 4 were used. Ad-
ditionally, during training, 10% of the text prompts were replaced with an empty string, a common
approach to encourage the model to focus on learning the visual prompt.

In our experiments, we first evaluate the quality of the fine-tuned ControlNet generation using
Medina-34. In the absence of a benchmark, we compared our approach with metrics from pre-
trained SD to evaluate the potential for improvement. In the appendix, we present real images,
SD-generated images, and images created using our fine-tuned ControlNet. The latter consistently
produces top views of cars with fewer design artefacts compared to those generated with SD.
shows that the fine-tuned ControlNet has significantly improved the quality of the generated images,
both in terms of density and coverage. The table also includes metrics from additional experiments
conducted to improve generation quality. One experiment improved ControlNet by using detailed
text prompts for tuning and inference, while two others applied post-processing to decrease gen-
erated objects’ resolution and size, notably enhancing evaluation metrics. Experiment details and
prompts are available in the paper’s GitHub repository.

Table 2: Density and coverage object generation: car

Density  Coverage

SD 0.012 0.029
ControlNet 0.084 0.177
ControlNet with detailed prompt 0.136 0.264
ControlNet with lower resolution 0.167 0.290
ControlNet with smaller images 0.452 0.569
ControlNet (all factors combined) 0.603 0.681
Real distribution 0.993 1.0

Although the strategies in the different experiments have resulted in a significant improvement,
there remains a domain gap between the synthetic and real images. To further bridge this gap,
future work can explore prompt engineering for more generation guidance, for example specifying
the presence of shadows, rain or snow. With the approach we have developed, we have succeeded
in adding satellite data without having to manually manipulate the images. However, the process
must be initiated by the user by defining the desired object and its location. It is expected that the
user selects plausible locations for the objects to be placed, as our approach does not perform a
plausibility check.

EXPERIMENT 3: OBJECT DETECTION MODEL PERFORMANCE WITH SYNTHETIC DATA

To assess the impact of our data generation method on object detection model performance, we fine-
tune the YOLOv8 model Jocher et al.|(2023)), pre-trained on the COCO [Lin et al.| (2014} dataset.
As a dataset, we are considering Pleiades Neo satellite imagery covering the Rotterdam harbour,
Netherlands. Images were acquired on June 20, 2022, with a resolution of 0.29 meters/pixel. Nine
object classes, including cars, were labeled, and details are accessible in our GitHub repository.
For compatibility with the detection model, we used 640 x 640 crops, dividing the dataset into
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“non-empty” (with cars, 20 training images with 50 objects, 211 validation images) and “empty”’
(for inpainting, 20 images). We created six training sets for independent experiments: Original (20
images), Geometric augmentation x1 (40 images), Proposed augmentation (40 images), Geometric
augmentation x2 (60 images), and Proposed + Geometric augmentation x1 (60 images).

For every experiment, we trained on 30 epochs, set early stopping of 10 epochs, used Adam opti-
mizer with weight decay and batch size 4, applied early stopping based on validation subset accord-
ing to Mean Average Precision (mAP) metric; Several performance metrics for these experiments are
averaged over three different seeds and presented in[Table 3} According to we can observe

Table 3: Performance results for object detection task using YOLOvS8n as backbone model

mAP Recall  Fl-score

Original dataset 0.153 0.134 0.209
Geometric augmentation X 1 0.201 0.229 0.291
Proposed approach 0.212 0.275 0.311
Geometric augmentation X 2 0.145 0.164 0.218

Proposed approach + Geometric augmentation X1  0.226  0.2158 0.293

that applying geometric transformations once (total 40 images) improved the detection performance.
However repeating geometric transformations on the initial dataset actually reduced performance,
indicating that the model may have overfitted to the specific real instances. On the other hand the
highest mAP improvement of 47% was achieved when using our proposed data augmentation ap-
proach in addition to geometric transformations. Additionally, in terms of recall and F1 score, our
approach showed superior performance, achieving values of 0.275 and 0.311 respectively, surpass-
ing the results of other approaches.

Figure 3: Examples of images generated using our proposed approach.
4 CONCLUSION

This paper introduces an innovative data augmentation technique for Earth Observation (EO) tasks,
overcoming the issue of limited labeled data. By leveraging open vocabulary segmentation models
for precise object placement and stable diffusion for generating diverse, realistic objects, our method
surpasses traditional augmentation techniques in mAP and F1 scores, especially when combined
with them. Future efforts will focus on refining object placement strategies for broader applicability
and testing synthetic image effectiveness on various objects with sophisticated benchmarks like
GAN:S.
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APPENDIX

(a) Original i

a-34 dataset

——

(b) Generated generated using Stable-Diffusion-v1-5

(c) Generated using ControlNet fine-tuned with drone images from Medina-34 dataset
Figure 4: Example of original and synthetically generated images of cars
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Figure 5: Subset of the synthetic dataset created using proposed object-based augmentation ap-
proach: Car on road example
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