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ABSTRACT

Spatiotemporal data faces many analogous challenges to natural language text in-
cluding the ordering of locations (words) in a sequence, long range dependencies
between locations, and locations having multiple meanings. In this work, we pro-
pose a novel model for representing high dimensional spatiotemporal trajectories
as sequences of discrete locations and encoding them with a Transformer-based
neural network architecture. Similar to language models, our Sequence Trans-
former for Agent Representation Encodings (STARE) model learns these encod-
ing through the supervisory signal of various tasks, e.g. classification of agent
trajectories. We present experimental results on various synthetic and real trajec-
tory datasets and show that our proposed STARE model can correctly learn labels
along with meaningful encodings.

1 INTRODUCTION

In the modern world, geospatial mobility data has become increasingly available with the prolifera-
tion of mobile devices and other positioning and sensor technologies (Zheng et al., 2011; PFLOW,
2019). These technologies have also allowed wildlife researchers to monitor and collect data on
animal movements and their ecosystems (BirdLife, 2023; Movebank, 2023). This increasing avail-
ability of location datasets has been leveraged by researchers allowing them to build models that
further their understanding of mobility patterns (Jiang & Luo, 2022; Bartlam-Brooks et al., 2013),
trafficking, and infectious disease (Hu et al., 2021; Ratanakorn et al., 2018) (in both humans and an-
imals). Inspired by the successes of neural networks in other fields (e.g. vision, language, speech),
researchers have leveraged their flexible architecture and applied them to trajectory data to model
human and animal mobility patterns (Luca et al., 2021; Wijeyakulasuriya et al., 2020).

The sequential nature of trajectory data shares many similar properties with the sequential nature
of natural language. Tokenizing sentences or text segments in Natural Language Processing (NLP)
is essentially a mapping from a complex “quasi-infinite” space to a sequence of discrete elements
in a finite vocabulary. In a similar fashion to rule-based or algorithmic tokenizers (Honnibal &
Montani, 2017; Sennrich et al., 2015), the “quasi-continuous” high frequency GPS coordinates in
trajectory data can also be tokenized into a lower dimensional sequence with a finite vocabulary.
Also, just as tokens in language settings have semantic meaning (e.g., [fir] refers to a coniferous
tree), tokens in mobility data can also have inherent meaning about the location they represent (e.g.,
(45.832119, 6.865575) is in the French alps). The order of the tokens in both domains also contains
key information as language tokens can modify each other and location tokens can have different
implicit meanings depending on their order (e.g., visiting a supermarket before work makes it a
breakfast location whereas after work makes it a grocery shop). We can further extend our anal-
ogy between NLP and trajectory data to the “document” level where just as sentences in the same
document will share similar properties such as word choice, grammar, and style, trajectories col-
lected from the same agent or user will also share similar orderings of locations or routes. Thus, we
leverage these numerous similarities by proposing the Sequence Transformer for Agent Represen-
tation Encodings (STARE) model, a neural network with an encoder-based transformer architecture
similar to those used in BERT-like language models (Devlin et al., 2018; Vaswani et al., 2017).
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Other works have also observed the connection between the sequential nature of trajectory data
and language or other sequential domains. Earlier works focused on more simple architectures,
such as RNN in De Brébisson et al. (2015) and LSTM in Xu et al. (2018), to learn to predict
trajectories and final locations. While later works also leveraged the power of transformer style
architectures, Tsiligkaridis et al. (2020); Giuliari et al. (2021); Abideen et al. (2021) they focused
on forecasting trajectories for next destination prediction. Additionally, these transformer-based
architectures also added significant amounts of side information, in the form of a contextual block
(Tsiligkaridis et al., 2022) or multiple feature extractors that incorporate a points of interest ontology
and a social network (Xue et al., 2021). Instead of just having a similar architecture, Li et al. (2022)
and Xue et al. (2022) extended pre-trained large language models to take in pseudo-sentences that
represent locations in natural language, effectively performing an NLP task.

In contrast, we propose an approach that does not require any additional information aside from
timestamped spatiotemporal data. With this, our STARE model has the flexibility to be used in a
variety of settings where only location and time data is present, such as with various animal trajectory
datasets and in environments without contextual and/or foundational information. Our model simply
takes in only spatiotemporal data and ultimately learns important encodings that can be used to both
solve various downstream tasks (e.g., classification, destination prediction, clustering) and learn
recurring behaviors and Patterns of Life (PoL) of various agents of interest.

In this work, we make the following contributions. First, we present a data discretization technique
for reducing the dimensionality of long and rich agent PoL data. Second, we propose a novel
transformer-based architecture for obtaining informative data embeddings which can be used to
learn relationships between agents. Finally, we present experiments on both simulated and real
trajectory datasets to demonstrate our model’s ability to learn informative encodings of sequential
data via a classification task.

2 STARE MODEL

In this section, we describe our STARE model, which compresses raw trajectory data into novel
tokenized sequences for input into a Transformer Encoder Stack (TES). Our architecture is similar
to that of Tsiligkaridis et al. (2022), but we specifically focus on the minimal data setting where
we solely have sequence information as data, i.e. we do not use a contextual block in our input as
we do not incorporate any non-sequential information in our model. The aim of STARE is to learn
encodings of the trajectory data that have semantic meaning and, in turn, can be used to predict
labels of interest with a Multi-Layer Perceptron (MLP). Figure 1 displays our architecture.

Figure 1: Our proposed STARE Transformer-based architecture which uses a TES to create mean-
ingful embeddings of input data and an MLP to make class membership predictions.

We begin with a dataset X containing N observations of a tuple containing the latitude, longitude,
and timestamp of each agent for A total agents. To form multiple samples per agent and to reduce
the size of our model architecture, we make independence assumptions on the temporal component
by assuming that timepoints within a time window are dependent with each other, but independent
of those outside the window. Explicitly, we partition Xa, the trajectory of agent a, into set of M
sub-trajectories, {X1, X2, . . . , XM} where each sub-trajectory is the length of some time window
(e.g. 6 hours, a day, or a week). The choice of the time window length is dataset dependent, but
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uses the implicit assumption that repetitive behavior is expected and independent of each other. For
example, humans tend to have cycles of the same behavior over days (e.g., people live in one place,
wake up, go to work, do some activities throughout the day, and then return home to end their
day) with some seasonality and anomalies. These independence assumptions are very typical in the
sequential domain and parallel the breaking of text into multiple samples between sentences in NLP.

For a given agent a ∈ [1, ..., A] and a time window m ∈ [1, ...,M ], we define a trajectory Ta,m as:
Definition 1 (Trajectory Ta,m) For a time window m, agent a has a raw trajectory Ta,m that is

defined as a sequence of La,m time-stamped locations: Ta,m = [p1, . . . , pLa,m
], where

each point pi = [lati, loni, ti], is a tuple of latitude, longitude, and time, that identifies the
geographic location of that point pi at time ti.

The number of data points in Ta,m can be very large and varying between different agents and
time windows due to potential uneven measurement sampling rates and durations. Since locations
are defined by their quasi-continuous latitude and longitude values, there is an infinitesimally large
number of unique locations. To combat this issue, we discretize the data inputs by only retaining
information about an agent’s Persistent Locations (PL) and the times they transition between PLs.

Specifically, we define a PL as a stationary point in a trajectory that is mapped to a discrete value in
an alphabet, where we define this alphabet to be S2 cells (a hierarchy of indexed spatial cells that
represent geographical areas over the world) at a certain zoom level (S2 Developers, 2024). We can
also discretize the transition times between PLs by defining another alphabet that is multiples of
some time measure, (e.g. minutes, hours) and rounding the transition times to the nearest multiple.
Let s : [Φ,Λ] → S2 be a mapping from latitude, longitude space to our S2 cell alphabet and
tt : R+ → T be a mapping from the positive real space of transition times to our discrete alphabet
of rounded times. Thus, the concatenated sub-sequences of visited PLs and transition times form a
data sample for agent a on time window m that is a discretized and compressed version of Ta,m,

xa,m =
[
[BOS], , s(Ta,m), [SEP ], tt(Ta,m), [EOS]

]
(1)

where the [BOS], [EOS], [SEP ] tokens, borrowed from NLP, represent beginning, end, and sep-
arating tokens, respectively. We show an example of this process in Appendix A.1. Evidently, our
discretization is a means of tokenizing our input to be passed into our Transformer-based model.

3 SIMULATION AND WILDLIFE ANIMAL MOVEMENT EXPERIMENTS

We simulate trajectories with a generative model that approximately aligns with our modelling as-
sumptions for the STARE model. Specifically, our generative model is parameterized by a series of
PLs associated with each agent. We also make the following assumptions in order to have realistic
behaviors for the human agents: They often: 1) have reoccurring behaviors in the same locations
(e.g. go to the same house every day), 2) live and behave similarly to others (i.e. there is some
sharing of PLs between humans), and 3) travel along roads between their PLs.

We randomly assign PL locations to each agent using foundational data from ORNL (2024); Thakur
et al. (2015); OSM contributors (2017) where the assignments encourage similarity among groups of
agents (e.g. their houses are within some radius of each other or they share the same office location).
We then connect the PLs using using an Open Street Maps (OSM) road network from the OSMnx
python package (Boeing, 2017) in order to have a high frequency dataset. For our experiments
below, we simulated data trajectories with 10, 20, and 30 subpopulations with 37, 348, and 1288
agents total, respectively, over a 28 day time period.

We showcase the performance of our STARE model with a 4 attention head, 2 encoder stack archi-
tecture and use an 85%/15% train/test split. We tokenize each agent’s trajectories into a 1 day time
window, and map the stationary points to an alphabet based on Zoom 16 S2 cells and the transi-
tion times to an alphabet of 30 minute increments. Since we know which agents belong to which
subpopulations, we can train our STARE model to learn either subpopulation membership or agent
behaviors using the corresponding labels.

In Table 1, we show the Correct Classification Rates (CCR), i.e. accuracy, for each training approach
on the 3 simulated datasets. Additionally, we compare our method against single-stack LSTM and
BiLSTM baselines with embedding and hidden dimensions of sizes 128 and 64, respectively; we see
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that our STARE model outperforms these baselines. When training on subpopulation labels, STARE
has perfect CCRs, but when training on agent labels, there are some misclassifications due to the
similar PoLs between agents in the same subpopulation. Figure 2 represents a matrix of averaged
predicted probability scores for the (S) synthetic dataset where each row is an agent class. We
see that many agents are correctly identified (only non-zero value is in the diagonal), but there are
others that have multiple blocks of non-zero values. Figure 3 visualizes the trajectories of the agents
in the first two blocks where we can see the reason for the misclassification: the PoLs between
these agents are extremely similar. Thus, we can use these misclassifications to learn relationships
between agents. In many realistic scenarios, subpopulation information will not be present, so we
can use agent labels to learn informative encodings from the output of the TES and leverage them to
learn relationships between agents in an attempt to form subpopulations.

To assess the effectiveness of extracting meaningful encodings with STARE in real scenarios, we
applied it to a raw trajectory dataset of ravens (Jain et al., 2022). We only used trajectory data from
49 ravens between March and July for both 2018 and 2019 because we observed a higher volume of
data for these intervals (Figure A8 displays the distribution of data in these months). We tokenize
each agent’s trajectories into a 1 day time window and train our STARE model using the same model
architecture and hyperparameters used in the synthetic data experiments.
We train our STARE model, along with baseline single-stack LSTM/BiLSTM models, using agent
labels with the same architecture and train/test split percentages used in the simulated data and obtain
the CCRs shown in Table 2. For our model, we then apply Principal Component Analysis (PCA)
to our STARE encodings to reduce the dimension of our embeddings and we also visualize the first
three principal components in Figure 4, where we color code samples based on agent labels. We
see separation between these color-coded point clouds, and each one represents samples of a raven.
As an example, we focus on the light blue mass that contains samples of a raven labeled as “Lisa”,
which has a wide and distinct PoL, as shown in Figure 5. Given these embeddings, we apply an
MLP to get probability scores, we apply Spectral Clustering (SC) on these probabilities, and obtain
the result in Figure A9a over the 49 ravens. Here, we identified 4 distinct clusters; in Cluster 2, we
see two ravens that exhibit unique movement patterns. Lisa is a member of this cluster and has a
distinct PoL, which the SC identified. All ravens are visualized in Figure A9b, and clear distinctions
between the 4 clusters can be seen.

4 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a spatiotemporal transformer-based model for learning both labels and
meaningful data encodings. Through experiments, we demonstrated our model’s ability to correctly
learn labels and informative encodings of sequential data. As future work, we plan to investigate
our model’s ability to scale up to very large volumes of data and and also train our model with a
masked language modeling scheme to further encourage it to learn latent information embedded
within trajectory data.
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Dataset STARE LSTM BiLSTM
Subpop Agent Subpop Agent Subpop Agent

(S): 10 Subpops, 37 Agents 100% 84.0% 100% 82.6% 100% 80.6%
(M): 20 Subpops, 348 Agents 100% 79.4% 100% 77.6% 100% 79.4%
(L): 30 Subpops, 1288 Agents 100% 74.2% 99.7% 73.2% 99.9% 74.1%

Table 1: CCR (accuracy) performance table of our STARE model, along with baseline single-stack
LSTM and BiLSTM architectures, on various simulated datasets and labeling schemes. The subpop
and agent columns represent training on subpopulation and agent labels, respectively. We see that
our STARE model slightly outperforms the LSTM baselines in terms of the CCR accuracy metric.

Dataset STARE LSTM BiLSTM
Ravens [Jain et al. (2022)] 39.8% 3.5% 3.9%

Table 2: Performance table of our STARE model, along with baseline single-stack LSTM and BiL-
STM architectures, on the Ravens dataset where we train with agent labels as subpopulation labels
do not exist here.

Figure 2: Matrix of avg. predicted probability
scores for (S) where rows are the 37 agents.

Figure 3: Visualization of the similar PoLs be-
tween misclassified agents. The agents corre-
sponding to the 1st / 3rd rows are in red / yellow
and those for the 8th / 9th rows are in blue / white.

Figure 4: 3D PCA of encodings (colored by
agent)

Figure 5: Lisa’s raw trajectories from
Cluster 2.
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A APPENDIX

A.1 DATA PREPROCESSING:

To obtain PLs, we use the location and time data at hand to create a speed signal for agent a in time
window m. With this, we want to locate all of the stationary points where agent a does not move. To
do so, we apply a speed threshold τspeed = 5mph and extract all of the coordinates where the speeds
are below τspeed. Figure A6 displays the output of this approach for a synthetic dataset where PLs
are shown in red and the S2 cells they reside within are shown in yellow.

Figure A6: Visualization of all extracted PLs from the 10 Subpopulations, 37 Agents synthetic
dataset along with the S2 cells that each PL resides in.

As a guiding example, Figure A7 displays an agent’s entire PoL along with their PL information.
The data in blue represents the PoL defined by their GPS positions, the red represents the PLs, and
the yellow rectangles represent S2 cells.

To form a data point for agent a in time window m, we must create visited PL and transition time
sub-sequences. We begin with Ta,m, which is the raw trajectory of agent a in time window m. Let
us say that in time window m, agent a starts at PL1, goes to PL2, then to PL5, then to PL3, and
finally ends the day back at PL1. We define the PLs using indices from 1 to the maximum amount
of PLs, nPL. The location sequence for the day becomes: s(Ta,m) = [1, 2, 5, 3, 1]. With this, we
then look at the transition times between the visited locations and form a sequence of these times
as: tt(Ta,m) = [tPL1→PL2 , tPL2→PL5 , tPL5→PL3 , tPL3→PL1 ]. Realistically, this sequence could be:
tt(Ta,m) = [9AM, 5PM, 7PM, 8PM]. Next, we adjust tt(Ta,m) by discretizing time into 30 minute
blocks, assigning integers to each block, and offsetting these indices based on the total amount of
PLs in the data (nPL), so as to avoid token overlap in the input between positions and times. With
this, our time sequence can become: tt(Ta,m) = [48, 64, 68, 70], where each element represents a
real time block. Finally, we zero pad s(Ta,m) and tt(Ta,m) to the maximum observed lengths in our
data (obtained by searching over all created sequences over all agents and days), incorporate start,
[BOS], separating, [SEP ], and end, [EOS], tokens, and concatenate them all as:

xa,m =
[
[BOS], s(Ta,m), [SEP ], tt(Ta,m), [EOS]

]
.

Realistically, the entire data sequence can be:

xa,m = [97, 1, 2, 5, 3, 1, ..., 0, 98, 48, 64, 68, 70, ..., 0, 99],

where 97, 98, and 99 represent [BOS], [SEP ], and [EOS] tokens, respectively.
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Figure A7: Visualization of an agent’s PoL (from the 10 Subpopulations, 37 Agents synthetic
dataset) over a 28 day period along with its derived PLs and the S2 cells that each PL resides in.
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A.2 ADDITIONAL FIGURES FOR THE RAVEN DATASET:

Figure A8: Distribution of data records among individual GPS-transmitter-equipped ravens during
the months of March to July for both 2018 and 2019, with at least 100,000 raw trajectory records per
month. This period corresponds to the annual temperature rise in the Austrian Alps, from an average
of 36.8°F in March to 62.5°F in July, which may formulate the habitual conditions of migration.
Even though this data volume graph is skewed, we still observe that ravens can have large amounts
of daily visited PLs.

(a) 4 clustered identified with Spectral Clustering were
highlighted with color labeled bounding boxes

(b) Datashaded Trajectories of all 49 ravens colored
by cluster for all 4 clusters as numbered

Figure A9: The averaged predicted probability score matrix is clustered with Spectral Clustering in
(a) into 4 clusters (where each cluster is highlighted with a color-labeled bounding box) and each
raven’s trajectories are colored by these cluster memberships in (b) where the intensity is dependent
on frequency of visits to the location.
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