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ABSTRACT

Geographically distributed data naturally varies from one location to another due to
different environmental conditions between regions. When we apply a model to a
different location, this creates a representation or covariate shift in input variables
between training and testing data. Theoretically, we expect this covariate shift to have
a detrimental impact on model performance. However, this negative impact is hard
to estimate beforehand merely from the input data, and trained models may perform
surprisingly well even under distribution shifts. This paper investigates how different
covariate shift strategies impact the model performance on geospatial vegetation
forecasting. In our experiments, we demonstrate that the model accurately predicts
in locations far from the training samples in space by leveraging the similar ecological
behavior of vegetation under comparable environmental conditions. We close with
an extensive summary that outlines our findings and provides an outlook on discussion
points that we hope to discuss in depth at the workshop.

1 INTRODUCTION

Geospatial machine learning (ML) models aspire to extend their applications beyond their training regions
(Rolf, 2023). However, geospatial data are spatially auto-correlated, meaning nearby areas tend to exhibit
similar values. This poses a significant challenge when applying and evaluating models trained on this type
of data, as datasets are rarely uniformly distributed(Fourcade et al., 2018; Ploton et al., 2020) and traditional
evaluation methods may inaccurately assess model performance (Pastorello et al., 2020; Meyer & Pebesma,
2022). To address this challenge, researchers Pohjankukka et al. (2017); Valavi et al. (2018); Meyer et al.
(2019) have developed spatial cross-validation methods for assessing the performance of geospatial models.
Despite these efforts, the subject remains actively debated, with ongoing discussions about the challenges
of model performance assessment on geospatial data Rolf (2023); Meyer & Pebesma (2021).

The critical aspect of this problem is distribution shifts (Quinonero-Candela et al., 2008; Ma et al., 2024).
A decrease in performance in unseen areas can arise from changes in either the distribution of input
features (covariate shift) or the distribution of the target variable (label shift) between training and testing
phases, affecting the model’s generalization performance. Additionally, a change of the conditional
distribution P(Y |X), meaning that the input-output relationship has changed (concept shift), can also
contribute. Estimating distribution shifts is challenging and often computationally impractical, especially
as the number of variables increases. More importantly, even if a distribution shift is attested, it does not
necessarily result in decreased performance.

In this work, we consider the vegetation forecasting task as an use case to explore the subject of distribution
shift in geospatial ML. We define the task as strongly guided video prediction (Requena-Mesa et al., 2021)
of satellite image time-series. The objective is to forecast a length-K sequence of future vegetation index
(VT+1,...,VT+K) based on previous length-T sequence satellite imagery (S1,...,ST ). Predictions are also
guided by using a set of environmental variables during context and prediction time steps (E1,...,ET+K).
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Figure 1: Biome distribution of the dataset and Proportional Portion in Africa. For instance, ’Tropical
and Subtropical Grasslands, Savannas and Shrublands’ represent 13% of the samples in the dataset, but
56% are located in Africa.

Formally, the task is to learn a function f that can be defined as:

V̂[T+1,...,T+K]=f(S[1,...,T ],E[1,...,T+K]) (1)

Vegetation forecasting is relevant for anticipatory action, for instance, in estimating vegetation response
to heatwaves or droughts (Barrett et al., 2020; Robin et al., 2022). However, at very high spatial resolution,
models can not be trained everywhere, necessitating a sample-based approach. Hence, such models may
be subject to distribution shifts in both time and space. In the temporal dimension, covariate shifts could
occur due to climate change (Jia et al., 2019), leading to increased temperature and extreme events such
as droughts and heatwaves (Chapman et al., 2019). Moreover, increased stress on ecosystems may alter
the conditional distribution; vegetation under stress or recovering may react differently to weather and
extreme events (Bastos et al., 2020; 2021). But, of course, we lack the data for those future conditions.
However, we can test model extrapolation capabilities in space without being constrained by data sparsity.
Our hypothesis is that areas far in space might be close in the feature space: while each ecosystem is
unique, plants under similar constraints tend to react to the same drivers and evolve similarly in different
places but under the same climate conditions —reflecting an evolutionary convergence. We group them
by biomes Olson & Dinerstein (2002) to evaluate this hypothesis.

This paper explores how a model can generalize across space using a global dataset specifically designed
for vegetation forecasting (Ji et al., 2024). We evaluate the model’s performance in continental Africa,
which was left out of the training but contains samples with the same biomes as during training, in varying
proportions (see Fig. 1). We train an ML model and assess the impact of two data-splitting methods. The
first involves training the model with samples from Africa, while the second excludes African samples
from the training set. We evaluate the performance of both methods across different biomes using a test
set composed of African samples. Our results indicate that both models exhibit similar performance,
supporting the hypothesis that samples from the same biome are close in the feature space and help
for generalization in geographical space. We hope this preliminary work will contribute to the ongoing
discussion on the geospatial data distribution shift problem.

2 DATA

Dataset Ji et al. (2024) have developed DeepExtremes, a global dataset of Earth System high-resolution
spatio-temporal data cubes sampled at locations that experienced extremely hot and dry conditions sometime
during their time span or at close-by locations outside those extreme events but with similarly stratified land
cover. Original samples have a spatial footprint of 2.56 km × 2.56 km at the Equator and contain satellite
imagery from Copernicus Sentinel-2 product L2A (Bands B02, B03, B04, B05, B06, B07, B8A, Scene
Classification Layer, with dimensions 128×128×495, spatial resolution 20 m, temporal resolution 5 days),
topography from Copernicus Digital Elevation Model (128×128, spatial resolution 20 m), meteorology
from ERA5-Land reanalysis of the climate (1×1×495, temporal resolution 5 days), as well as a cloud mask
from EarthNet Benson et al. (2023) that matches the satellite imagery. The dataset covers 2017–2020. Given
the design of the dataset, sampled locations are clustered in and around areas affected by extreme events.
The consequent spatial autocorrelation should be circumvented. The original dataset comes with a ten-fold
split, which ensures that samples from one fold are at least 50 km distant from samples in any other fold
(See Annex for the locations). In addition, we use the biomes map as defined by Olson & Dinerstein (2002).

Samples One original sample is partitioned into four minicubes, each spanning 450 days. In total, there
are 11,100 minicubes. Since the dataset has a 5-daily resolution, each sample contains 90 time steps, with
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Metrics ’With Africa’ ’Without Africa’ Relative Performance (%) p-value effect size d

RMSE↓ 0.046 0.048 6.84 1e−173 −0.39
r2↑ 0.67 0.66 −1.43 1e−86 0.27
NNSE↑ 0.44 0.42 −3.75 1e−189 0.41

Table 1: p-values of the paired t-test conducted and the effect size r. We indicate the mean for every
metric on the samples located in Africa.

Biome ’With Africa’ Relative Performance (%)

RMSE↓ r2↑ NNSE↑ RMSE↓ r2↑ NNSE↑
Tropical and Subtropical Grasslands, Savannas and Shrublands 0.05 0.69 0.46 7.90 -1.80 -4.36
Flooded Grasslands and Savannas 0.05 0.61 0.37 4.77 -3.03 -2.39
Deserts and Xeric Shrublands 0.02 0.41 0.35 4.68 -1.35 -2.42
Tropical and Subtropical Dry Broadleaf Forests 0.02 0.51 0.56 4.32 1.84 -2.91
Tropical and Subtropical Moist Broadleaf Forests 0.05 0.62 0.37 3.79 0.49 -2.23
Montane Grasslands and Shrublands 0.06 0.56 0.32 -0.60 2.83 2.07
Mediterranean Forests, Woodlands and Scrub 0.03 0.38 0.37 -1.45 -2.23 -2.91
all biomes 0.046 0.67 0.44 6.84 -1.43 -3.75

Table 2: Relative Performance between the splits with and without samples in Africa during training.
We compute the mean of Relative Performance for each biome.

the first minicube starting randomly during the first year. For each minicube, we use the first 73 frames
(so 365 days) for the context of the model and evaluate on a target of 17 frames (almost a season). The
context period is linearly interpolated for every pixel of a sample in time to replace the pixel affected by
missing values or clouds. If no data is available at the first or last step, the mean of the pixel time-series
is used to fill it. The target period contains only raw data.

3 METHOD

Data splitting We aim to study the potential detrimental impact on model performance in Africa depending
on the availability of training data in this region. For this purpose, we create two dataset splits: ’With
Africa’ includes samples from all regions on Earth, including Africa, in both the training and validation
sets, following the spatial k-fold validation procedure described in the previous section. In ’Without
Africa’, we have excluded the samples located in Africa. In both cases, we test model performance solely
on samples located in Africa. We reproduce each experiment 5 times with different test and validation
folds. Additionally, during analyses, we excluded the biomes, Mangroves, and Temperate Conifer Forests
due to their limited sample size.

Model training We employ a ConvLSTM architecture (Shi et al., 2015) following the original
encoding-forecasting setup since ConvLSTM and LSTM architectures have been frequently used in
vegetation forecasting tasks (Diaconu et al., 2022; Robin et al., 2022; Martinuzzi et al., 2023; Kladny et al.,
2024). Details of the model and training are in Appendix A.

Evaluation method We assess the impact of data splitting on the increase in loss between the ’With Africa’
split and the ’w/o Africa’ split using three metrics: the Root Mean Squared Error (RMSE), the coefficient
of determination (R2), and the Normalized Nash Sutcliffe Efficiency (NNSE). NNSE is calculated as
NNSE=(2−NSE)−1 where NSE (Nash & Sutcliffe, 1970) rescales the Mean Squared Error (MSE)
with the variance of the observations (σ2

0) and is defined as NSE=1−MSE
σ2
0

. We compare both splitting
methods using the percentage of increase of error defined as:

Relative Performance (%)=
(MetricW/o Africa−MetricW Africa)

MetricW Africa
∗100. (2)

For each sample, we first mask non-valid pixels (missing, cloudy, or non-vegetation), then compute each
metric on every pixel time-series, and finally average the results in space to obtain a single value per
minicube.

Subsequently, we employ a paired t-test for each metric to assess the difference of performance between the
two dataset splitting methods where the null hypothesis is defined as H0: There is no significant difference
between the two models. However, with a large sample size, even tiny differences can achieve statistical
significance, but such small differences may lack practical importance. To address this, we complete our
analysis with Cohen’s d effect size (Cohen, 2013) to quantify the magnitude of the difference between
the sets. Cohen’s d is defined for paired samples t-test as the difference between two means divided by
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Figure 2: Distribution of several meteorological variables and NDVI for the biome Tropical and Subtropical
Grasslands, Savannas and Shrublands after rescaling between the training set and the African test set
of the ’w/o Africa’ splitting method.

the standard deviation of the difference: d=(x̄1− x̄2)(std(x1−x2))
−1, where x1 and x2 are the two

sets. Finally, we investigate the distribution shift between the training set without African samples and the
test set containing African samples. This is done by computing the mean of each meteorological variable,
along with the mean and standard deviation of the NDVI during the target period across all samples.

4 RESULTS

We aim to assess the model’s performance on the unseen African continent ’Without Africa’ by evaluating
the difference in performance between the two splitting methods. Additionally, we examine its performance
across various biomes, considering that some may be underrepresented in the training set.

Statistical Analysis We aim to assess the significance of the difference between both performances.
Table 1 indicates that all paired t-tests conclude on the rejection of the null hypothesis H0 with a threshold
α=0.01 , suggesting a significant difference between the two dataset split methods with a p-value <0.01.
However, Cohen’s d effect size suggests a small difference between the results of the two methods in
the case of RMSE and a medium difference for NNSE and r2.

Relative Performance We report the percentage of error increase per biome on the African samples
in Table 2. All biomes show a performance decrease lower than 8% for all metrics. All metrics display
small error increases or even small error reductions, even though the results are sometimes contradictory.
The contradiction may arise from the fact that RMSE does not consider the variance, which varies across
biomes, and MSE is used for training. In particular, we observe that in biomes such as Tropical and
Subtropical Grasslands, Savannas and Shrublands which are under-represented in the training set since
most of the samples are located in Africa, obtain the worse performance in both RMSE and NNSE.

Distribution of the variables In Fig. 2, we observe that the variables Total Precipitation (TP), Temperature
at 2m (T2m), and mean NDVI share the same range between the training set and the Africa test set for
the Tropical and Subtropical Grasslands, Savannas, and Shrublands biome. In contrast, Surface Net Solar
Radiation (SSR) and Surface Pressure (SP) exhibit more distinct distributions between the two sets, which
might be responsible for the decrease in performance in NNSE.

5 DISCUSSION AND CONCLUSION

We experimented to assess the robustness of spatial extrapolation of a vegetation forecasting model,
extrapolating from the rest of the world to Africa. Our findings indicate that a model trained without
African data performs comparably, with a performance decrease of less than seven percent on average.
Additionally, the most significant decrease occurs in a biome underrepresented in the training dataset
and predominantly in Africa. This could be due to various reasons, such as an inherent similarity of
ecological processes in comparable environmental conditions. Further research is needed to confirm
this by investigating the link between spatial robustness, biome distribution similarity, and distribution
shift. However, the metrics lead to different conclusions regarding the change in performance in some
biomes. Additionally, predicting African ecosystems might be easier due to lower variation in vegetation,
thereby potentially limiting the applicability of our results to other continents. A promising extension
is to examine the model’s generalization to other continents and unseen biomes. Our findings provide
encouraging results for utilizing the model beyond its training region, particularly when training samples
in similar environmental conditions are available for geospatial environmental tasks.
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Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni,
Almut Arneth, Pierre Gentine, Emilie Joetzjer, et al. Vulnerability of european ecosystems to two
compound dry and hot summers in 2018 and 2019. Earth system dynamics, 12(4):1015–1035, 2021.

Vitus Benson, Christian Requena-Mesa, Claire Robin, Lazaro Alonso, José Cortés, Zhihan Gao, Nora Lin-
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A APPENDIX

Model training We employ a ConvLSTM architecture (Shi et al., 2015) following the original
encoding-forecasting setup since ConvLSTM and LSTM architectures have been frequently used in
vegetation forecasting tasks (Diaconu et al., 2022; Robin et al., 2022; Martinuzzi et al., 2023; Kladny et al.,
2024). The model consists of two blocks for encoding and two blocks for the forecasting network, totaling
1 Mio. parameters. During the training, we employ a teacher forcing method (Kolen & Kremer, 2001),
meaning randomly substituting some prior predictions with ground truth as inputs to the autoregressive
model to expedite the convergence. We train our model on 10 epochs, using the AdamW optimizer
(Loshchilov & Hutter, 2017), with a learning rate of 10−4 for the first epoch, then 10−5, and finally 10−6

after the 7th epoch using a multi-step learning rate on a single A100 GPU. We use a masked MSE loss,
removing the missing, cloudy or non-vegetation pixels.

Figure 3: Distribution of several meteorological variables and NDVI after rescaling between the training
set and the African test set of the ’w/o Africa’ splitting method.

Figure 4: Map of the samples’ location, with colors corresponding to the 10-fold split utilized to mitigate
spatial auto-correlation.

7



ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

Figure 5: Violin Plots of RMSE Difference of Both Split Methods on African Samples. For each sample,
we compare the difference of RMSE between both split methods. The violin plot shows that the error
is Gaussian across the samples.
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