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ABSTRACT

Machine learning is applied to Earth Observation (EO) data to derive data sets that
are used to characterise, comprehend and conserve natural resources, contributing
to progress towards international accords. However, the derived datasets contain
inherent uncertainty and need to be quantified reliably to avoid negative down-
stream consequences. In response to the increased need to report uncertainty,
we bring attention to the promise of conformal prediction within the domain of
EO. Conformal prediction is an Uncertainty Quantification (UQ) method that of-
fers statistically valid and informative prediction regions while concurrently being
computationally efficient, model-agnostic, distribution-free and can be applied in
a post-hoc manner without requiring access to the underlying model and training
dataset. We assessed the current state of uncertainty quantification in the EO do-
main and found that only 21% of the reviewed datasets incorporated a degree of
uncertainty information, with unreliable methods prevalent. Next, we introduce
Google Earth Engine native modules that can integrate into existing predictive
modelling workflows and demonstrate the versatility, efficiency, and scalability
of these tools by applying them to datasets spanning continental to global scales,
regression, and classification tasks, featuring both traditional and deep learning-
based workflows. We anticipate that the increased availability of easy-to-use im-
plementations of conformal predictors, such as those provided here, will drive
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wider adoption of rigorous uncertainty quantification in EO, thereby enhancing
the reliability of uses such as operational monitoring and decision-making.

1 INTRODUCTION

Machine learning-derived datasets are widely used in ecology and conservation but may contain
unquantified or unreliable uncertainty information. Moreover, the continued use of the underlying
predictive models will inevitably expose them to data beyond the scope of their training data, com-
promising system performance (Quinonero-Candela et al., 2008; Sugiyama & Kawanabe, 2012).
Data acquired by satellites, including reflectance spectra, backscatter or waveform data contain in-
herent uncertainty owing to measurement noise, randomness, unpredictability in a system, sensor
anomalies (for example Landsat-8 thermal calibration issues, (Barsi et al., 2020)), imperfect pre-
processing steps (for example, atmospheric correction, orthorectification and terrain corrections)
and partial data acquisition (For example, due to the scan-line error in Landsat-7 or the acquisition
footprint of Global Ecosystem Dynamics Investigation (GEDI) (Paasche et al., 2022; Wang et al.,
2020)). These sources of uncertainty represent irreducible error and are denoted as aleatoric un-
certainty (Gruber et al., 2023). In addition, uncertainties that arise from the lack of knowledge or
understanding of a system, the selected modelling framework and the stochastic nature of model
fitting are cumulatively referred to as epistemic uncertainty (Gruber et al., 2023). For instance, the
lack of knowledge/data may be attributed to regions of the world that are critically under-sampled,
which may not be well characterized by models trained on data from the global North, reducing the
suitability of the derived data and end-user trust (Ludwig et al., 2023).

Consequently, communicating reliable uncertainty information can be beneficial for data creators
and data users. Data users may rely on model predictions for decision-making. The ability to under-
stand the confidence associated with predictions is important to prevent erroneous decisions and for
risk management. UQ addresses this by encouraging analytical thinking around the data-generating
process and by reducing the overreliance on low-confidence predictions. Data creators can use un-
certainty information to identify systematic errors, bias, and instances where the model encounters
difficulties. This may prompt targeted labelling efforts, the correction of incorrectly labelled data,
or making changes to a model to efficiently improve its accuracy and reduce uncertainty. Despite
the value that UQ holds, there is no current consensus on the best practices for UQ in EO. This has
led to the use of inappropriate UQ methods such as ensemble methods, Bayesian methods, bagging,
and quantile regression. To address this, we carried out the first systematic review of large-scale
EO datasets to provide empirical evidence and support for the need for a UQ framework like con-
formal prediction. Conformal prediction is a mathematical framework, that provides uncertainty
information with a coverage guarantee. This translates to the provision of uncertainty regions with a
constrained error rate. For example, if a 95% confidence level is specified, the conformal predictor
will provide a prediction region that contains the true value with a 95% probability (Angelopoulos
& Bates, 2023; Molnar, 2023). This coverage guarantee (validity property) remains conspicuously
absent from all other pixel-wise UQ methodologies, except under limited distribution assumptions
(Vovk et al., 2005; Shafer & Vovk, 2008; Manokhin, 2022). Moreover, it has been shown to hold
for satellite data despite spatial autocorrelation (Valle et al., 2023). An additional study explored
the trade-offs between different confidence levels and the statistical efficiency of conformal predic-
tion for classification. To encourage the wider adoption of conformal prediction in operational set-
tings, we implemented conformal prediction in the freely available, cloud computing GEE platform
(Python and JavaScript API) that is widely used for developing datasets across large extents. There-
after, we demonstrate the versatility and scalability of the introduced tools with two case studies.
The GitHub repository 1 provides the code used for the analyses, annotated notebooks, demos, and
a Google Earth Engine application for users to visualize our results and create their own uncertainty
maps.

1GitHub repo: https://github.com/Geethen/GEEConformal
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2 METHODS

2.1 ASSESSING THE STATUS OF UNCERTAINTY QUANTIFICATION IN EARTH OBSERVATION.

To assess the status of UQ in EO, we examined all machine learning-derived datasets in the GEE
and the GEE community catalogue (last accessed update: 2 November 2023) (Roy et al., 2023).
These catalogues were selected because they contain commonly used datasets with national to global
coverage. For the core GEE catalogue, “machine learning”, “uncertainty” and “UQ” keywords were
used to filter and select all machine learning-derived datasets that were reviewed. We examined each
of the 241 resulting datasets in conjunction with their research papers to determine if i) machine
learning was used to derive the dataset, ii) uncertainty was quantified for the dataset and, if it was
quantified, iii) which UQ method was employed.

2.2 DEMONSTRATING THE UTILITY OF CONFORMAL PREDICTORS

The selected case studies look at UQ for canopy height estimation using GEDI for Africa (Dubayah
et al., 2020)(Dubayah et al., 2020), and land cover classification (>110M instances) using the Dy-
namic World dataset (Brown et al., 2022). Google’s Dynamic World is a near-real-time global (9-
class) landcover dataset that is readily available in GEE (Brown et al., 2022). GEDI is a space-based
laser altimeter with a full-waveform detector that captures the vertical structure and distribution of
vegetation, a proxy for biomass and tree canopy height (Duncanson et al., 2022). These volumetric
tree-stand variables are captured in 100 relative height (rh) bands. For instance, the selected rh98
response band corresponds to the height at which 98% of energy is returned to the detector from a
25x25 m footprint (Dubayah et al., 2020). This band was combined with the visible-NIR (RGB and
Near-Infrared) bands of the first 2020 biannual composite from the NICFI PlanetScope dataset to
estimate tree canopy height. This regression task used a quantile Light Gradient Boosting Machine
(LGBM) model with a train, test and calibration split in the ratio 65:20:15.

Conformal prediction can be summarised in six steps. 1) A dataset is split into a train, calibration
and test set. 2) The train set is used to fit a predictive model that is then used to estimate the class
probabilities or regressed values within the calibration and test sets. 3) the predicted values for the
calibration set are combined with the reference/expected values in the calibration set using a non-
conformity function that provides a measure of conformity of a calibration instance with the train
dataset. Simple, but popular nonconformity score functions include hinge loss for classification
and the absolute residual for regression tasks. 4) The computed nonconformity scores are used to
compute a quantile-based threshold corresponding to the user-defined confidence level. 5) Next, the
computed threshold is used to derive prediction regions, a multi-class prediction set for classification
and prediction intervals for regression, for the test set that is used in combination with the reference
values to evaluate the quality of the calibrated conformal predictor. 6) Lastly, the calibrated pre-
dictor is applied to new instances to quantify uncertainty. For a more detailed description refer to
(Angelopoulos & Bates, 2023; Molnar, 2023). A drawback of the mentioned scoring function for
regression tasks is the lack of adaptability i.e., all prediction intervals have the same width, irre-
spective of their difficulty. Therefore, conformal quantile regression has been introduced to provide
adaptability (Angelopoulos & Bates, 2023; Romano et al., 2019). For the classification task, we use
the least ambiguous set-valued conformal classifier method (Sadinle et al., 2019). For the regression
task, we use conformal quantile regression (Romano et al., 2019).

3 RESULTS AND DISCUSSION

Uncertainty is seldom considered in EO with only 18 of the 87 (21%) reviewed datasets in the GEE
catalogues citing studies that quantified uncertainty (Figure 1). This may be attributed to a lack
of consensus in methodologies, a lack of easy-to-use tools, and a lack of access to computational
power required for some methods (Duncanson et al., 2022; Valle et al., 2023). For the 18 studies,
quantile regression is commonly used for regression tasks while model ensembles are commonly
used for classification tasks. Bootstrapping and design-based area estimates are commonly used to
provide confidence intervals for accuracy scores and area estimation, respectively. However, they
cannot provide uncertainty information at the pixel-level. In addition, an evaluation of the quality
(validity and efficiency) of the quantified uncertainty was lacking, except for its partial consideration
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in a single study (Lang et al., 2023). While ensemble and quantile regression methods are generally
accessible and straightforward to implement, it is important to note that neither of these approaches
offer valid coverage guarantees in a distribution-free manner, producing either over-conservative or
overly optimistic prediction regions.

Figure 1: The classification of each reviewed dataset (n = 241) from both the GEE catalogue and
the GEE community catalogue. Only the datasets that were derived using machine learning were
considered from the main GEE catalogue. For the community catalogue, all datasets comprising the
catalogue up to the 2 November 2023 update were considered. Five studies used more than one UQ
method.

We have demonstrated the utility of conformal prediction to quantify uncertainty in a robust and
scalable manner relevant to classification and regression tasks in EO. For classification, we represent
pixel-wise uncertainty as the number of classes included in a pixels’ prediction set. Highly uncertain
predictions can either be represented with an empty set (length equal to zero) or a large multi-label
set (length closer to the candidate number of Dynamic World classes (9)). A multi-label set suggests
that the model is finding it challenging to distinguish between several possible class labels at the
desired confidence level. Although such a prediction is not incorrect, it is inconclusive, and human
intervention would be required to derive the true label. Empty set predictions are examples where
the model could not assign any label, typically meaning that the example was very different from
the training data. Conversely, the most confident predictions are shown with set lengths of one. For
instance, inland water and forest cover predictions are among the most reliably mapped land cover
classes (Figure 2A-C), whereas object boundaries typical of mixed landcover pixels, transition and
seasonal areas are associated with larger prediction sets and higher uncertainty (Figure 2B).

For the canopy height regression task (test set RMSE = 3.30m), we represent uncertainty as the
difference between the upper and lower prediction bound, referred to as the prediction interval. The
prediction interval contains the actual canopy height, as based on GEDI, with a 95% probability (em-
pirical marginal coverage, 95.15% ± 0.07). Prediction intervals with a greater width are indicative of
higher uncertainty. The average prediction interval width is 9.28m ± 0.03m. Generally, taller canopy
height (Figure 2D) corresponds to higher uncertainty (Figure 2E), but when one looks at water sys-
tems and pans, some instances deviate from this generalisation. For example, the Sua salt pan in
Botswana and the Namibian Etosha pan (Figure 2E, red boxes). Moreover, a similar deviation can be
seen for diagonal image artefacts in central Africa (Figure 2E, feint lines), comprising aleatoric un-
certainty due to seamlines. By knowing such shortcomings, it becomes possible to enhance system
performance through active-learning paradigms (Boulent et al., 2023; Ren et al., 2021). In this way,
conformal prediction may expedite the transition towards collaborative human-AI systems. Such
a paradigm shift is anticipated to engender enhanced trust, increased adoption rates, and overall
improved operational efficiency (Dvijotham et al., 2023; Kamar, 2016; Wang et al., 2020).

4 CONCLUSION

The use of EO-derived datasets in data-driven decision-making has made a substantial contribution
to the characterisation, comprehension, and conservation of planet Earth. Nevertheless, our exam-
ination of national to global scale datasets involved in these contributions highlights the lack of
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Figure 2: The quantified uncertainty for a) a 2020 first non-null global land cover image from Dy-
namic World, b-c) A high-resolution Google Earth Image (red point in A) with corresponding c)
length of the prediction sets. The d) tree canopy height as estimated from GEDI and NICFI Plan-
etScope data, e) associated prediction intervals with a 95% confidence level, highlighting diagonal
linear artefacts and large prediction intervals for pans (red boxes).

reporting uncertainty and the lack of UQ methods that provide pixel-wise uncertainty information
accompanied by coverage guarantees. We believe that UQ through the inclusion of conformal pre-
diction into AI systems stands to significantly increase the role of EO data in operational monitoring
systems, policy formulation, and regulatory reporting, accelerating progress towards the realisation
of international planetary objectives and targets.
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