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ABSTRACT

Fully supervised deep learning approaches have demonstrated impressive ac-
curacy in sea ice classification, but their dependence on high-resolution labels
presents a significant challenge due to the difficulty of obtaining such data. In
response, our weakly supervised learning method provides a compelling alterna-
tive by utilizing lower-resolution regional labels from expert-annotated ice charts.
This approach achieves exceptional pixel-level classification performance by in-
troducing regional loss representations during training to measure the disparity
between predicted and ice chart-derived sea ice type distributions. Leveraging the
AI4Arctic Sea Ice Challenge Dataset, our method outperforms the fully supervised
U-Net benchmark, the top solution of the AutoIce challenge, in both mapping res-
olution and class-wise accuracy, marking a significant advancement in automated
operational sea ice mapping.

1 INTRODUCTION

The increasing impact of rapid climate change on polar sea ice has heightened the importance of
monitoring sea ice types using operational Synthetic Aperture Radar (SAR) imagery. This monitor-
ing is crucial for maritime safety, Arctic shipping route planning, and assimilation into forecasting
models. SAR satellite observations are commonly used for sea ice mapping, providing wide cov-
erage, day/night observation, high resolution, nearly all-weather capability, and a high revisit rate
(Lyu et al., 2022b).

Distinct scattering properties in SAR imagery allow the differentiation of various ice types. Manual
annotation of sea ice charts, a common practice for operational sea ice mapping, results in coarse
spatial resolution and lacks pixel-level labels, motivating the development of automated methods.
Current limitations in manual ice charting, including biases, representativity errors, and labeling
uncertainties, underscore the need for more accurate and high-resolution automated sea ice mapping
Stokholm et al. (2022). In recent years, deep learning (DL) models, such as convolutional neural
networks (CNNs), have shown promise due to their ability to automatically extract features, with
many related works being published (Boulze et al. (2020); Lyu et al. (2022a); Chen et al. (2023)).
However, fully-supervised CNNs require extensive labeled data, which is often limited in sea ice
studies.

The AI4Arctic Sea Ice Challenge dataset by Buus-Hinkler et al. (2022) has emerged as a benchmark,
providing a large-scale dataset for DL-based sea ice mapping. While this dataset addresses some
limitations, challenges remain, such as uncertainties and errors introduced during label conversion.

The ice analyst annotates the SAR image using a polygon-based egg code. This egg code contains
the concentration of each ice type within the polygon and lacks pixel-wise labels; therefore, the exact
location of the label couldn’t be known. However, training a semantic segmentation model requires
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pixel-wise labels. So, as a workaround, in the AI4Arctic dataset, only dominant ice-type poly-
gons(partial concentration ¿ 65%) are used and converted to pixel-wise labels. However, real-world
SAR images contain lots of heterogeneous regions, and getting rid of them is not ideal, resulting in
the loss of crucial data for training.

To overcome the limitations of fully supervised learning, this paper introduces a novel weakly super-
vised learning method for per-pixel sea ice type classification directly from region-based ice chart
labels, following the successful implementations of weakly supervised learning in remote sensing
imagery (Xu et al., 2016). The methodology, experimental results, and conclusions are detailed in
subsequent sections.

2 METHODOLOGY

2.1 REGIONAL LABEL GENERATION FROM ICE CHARTS

Despite the SIGRID-3 coding (SIG) in ice charts offering over 10 classes of ice types, some are
underrepresented, leading to label uncertainty and visual ambiguities between similar classes. To
simplify the problem and enhance generalization, we aggregate SIGRID-3 codes into four classes:
open water (ice-free), young ice, first-year ice, and multiyear ice, as described in Table 1. Since the
ice characteristics in ice charts are provided for each manually drawn polygon, the regional label for
each polygon can be represented by a 4-dimensional vector, indicating the partial fraction of a given
ice type. More details about the simplified egg code can be found in Appendix A.2.

Table 1: Description of the classes of sea ice types defined in this research.
Entry

number
Class

representation Description

0 Open water Ice free regions identified in ice charts
1 Young ice Ice with thickness no more than 30 cm

2 First year ice
(FYI)

Ice of no more than one year’s growth
developing from young ice with
thickness larger than 30 cm

3 Multiyear ice
(MYI) Ice survived at least one melt season

Figure 1: The architecture of the proposed pixel-level ice type mapping model based on a U-Net
and the weakly supervised learning scheme (indicated by dash lines). The digit below each layer
indicates the number of filters for each convolution/deconvolution layer.

2.2 NETWORK ARCHITECTURE

We employ the U-Net architecture for semantic segmentation (Ronneberger et al., 2015) as the
foundation of our ice type classification model, as shown in Fig. 1. The input channels include
Sentinel-1 SAR imagery and corresponding multi-source ancillary data, as described in Appendix
(Table 4). Other experiment-related hyperparameters, such as input channels, batch size, learning
rate, etc., are also outlined in the Appendix A.1.
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The U-Net structure in use comprises four encoder-decoder blocks. For the encoder, the number of
filters (with 3 × 3 kernel size) in the 1st to 4th layer is 16, 32, 64, and 64, respectively (and vice
versa for the decoder). To predict pixel-based ice type classification, the outputs of the last decoder
are processed through a 1 × 1 convolution layer with the number of filters(channels) equal to the
number of classes.

2.3 WEAKLY SUPERVISED LEARNING VIA REGIONAL LOSS REPRESENTATIONS

Our proposed algorithm employs a weakly supervised learning approach, as depicted in Fig. 1. It
uses a U-Net architecture to generate a pixel-wise classification map that identifies different types of
ice in an input image. During the training phase, we assume each image patch contains an arbitrary
number of polygons that have been manually annotated on ice charts. For each of these polygons, we
derive a prediction tensor from the U-Net’s output. This prediction tensor, which is a 4-dimensional
vector, represents the estimated partial concentrations of various ice classes within the polygon. We
then compare this polygon-based prediction tensor against a ground truth tensor derived from the
ice chart and calculate the loss. This comparison enables the model to learn from regional (polygon-
based) representations, and produce pixel-by-pixel ice types predictions.

Mathematically, if the predicted class probabilities for each pixel in a polygon are denoted as y =
{y1, y2, y3, y4}, then each element in the 4 dimensional polygon-based predicted tensor (denoted as
Y) can be calculated as

Yi =
1

Npixel

Npixel∑
j=1

yji , i = 1, ..., 4, (1)

where Npixel refers to the total number of pixels inside a polygon, and yji represents yi for the jth

pixel. In this work, we use the cross-entropy (CE) loss, expressed as

loss = − 1

n

n∑
i=1

Yi log(Ŷi), (2)

where n is the number of elements (classes) in each predicted/ground truth polygon-based tensor,
and Yi and Ŷi are the ground truth and predicted concentrations for the ith class from the polygon,
respectively. Finally, the loss calculated from all the polygons in all image patches in a batch is
aggregated as the total loss for backpropagation. By minimizing this total loss using optimization
algorithms (e.g., stochastic gradient descent Loshchilov & Hutter (2016)), the model effectively
learns the distribution of different ice types in each polygon while accurately providing per-pixel
classification. The pseudocode for this loss function can be found in Appendix A.3

3 EXPERIMENTAL RESULTS

We perform our experiments on the AI4arctic dataset and follow the same train-test split as in the
Autoice competition ((Stokholm et al., 2023)) for direct comparison. Out of the 533 dataset files, 22
are reserved for testing, and cross-validation is performed on the training set. Each run involves ran-
domly selecting 20 scenes for validation, with a total of 30 runs ensuring extensive scene coverage.

Given the absence of pixel-based ground truth, we numerically evaluate the model by computing
R2 scores between polygon-based sea ice type labels and predictions representing partial concentra-
tions. The R2 score for a specific class R2

i is calculated using the formula:

R2
i = 1−

∑Npoly

k=1 (Y k
i − Ŷ k

i )2∑Npoly

k=1 (Y k
i − Ȳi)2

, (3)

where Y k
i and Ŷ k

i are the ground truth and predicted partial concentration for the ith class in the kth

polygon, Ȳi is the mean value of Y k
i across all polygons, and Npoly is the total number of polygons

in the validation/testing set.

We compare our weakly supervised U-Net with the winner of the AutoIce competition, referred to
as benchmark U-Net (Chen et al. (2024)). We keep all the hyperparameters (A.1) same and only
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Table 2: The class-wise R2 scores calculated between predictions and ice charts of each ice type
using the benchmark U-Net and the proposed weakly supervised U-Net. The improvement of R2
scores for each class using the weakly supervised model are indicated by the percentages in the
brackets.

Models
Cross validation Testing

Open water Young ice First year ice Multiyear ice Open water Young ice First year ice Multiyear ice

Benchmark U-Net trained
with per pixel labels

93.95% 57.57% 75.54% 80.78% 91.37% 41.22% 75.52% 83.61%

Weakly supervised U-Net 97.45%
(+4.00%)

68.16%
(+10.59%)

85.23%
(+9.69%)

88.93%
(+8.17%)

95.73%
(+4.36%)

58.83%
(+17.61%)

83.09%
(+7.57%)

86.04%
(+2.43%)

replace the loss function and ground truth used. The benchmark model is trained with pixel-wise
labels and cross-entropy loss. Table 2 displays class-wise R2 scores computed between predictions
and ice charts labels on validation and testing sets. The weakly supervised U-Net achieves higher
R2 scores in all ice types. In the cross-validation sets, it increases R2 scores by around 4%, 10.59%,
9.69%, and 8.17% for open water, young ice, first-year ice, and multiyear ice, respectively. The same
improvements are observed in the testing set: 4.36%, 17.61%, 7.57%, and 2.43%. The hypothesis for
these improvements is that the benchmark U-Net only uses pixel-wise labels derived from dominant
polygons and ignores mixed polygons. This gets rid of so many polygons, which usually contain
minority classes (Young ice, First-year ice). On the other hand, our method is more aligned with the
way the labels are defined in charts.

Figure 2: Visualization of results obtained from two SAR scenes. (a): SAR image in HH chan-
nel, file ID name: 20180707T113313 cis, collected on July 7th, 2018 in Hudson Bay (center lati-
tude/longitude: 57.07◦N, 77.96◦W ); (b): The HV channel of the SAR image in (a); (c): Classifica-
tion results of (a) from the benchmark U-Net model (dark blue: open water; light blue: young ice;
yellow: first year ice; red: multiyear ice); (d): Classification results of (a) from the proposed weakly
supervised U-Net; (e): SAR image in HH channel, file ID name: 20190926T152005 cis, collected
on September 26th, 2019 in Western Arctic (center latitude/longitude: 72.63◦N, 126.61◦W ); (f):
The HV channel of the SAR image in (e); (g): Classification results of (e) from the benchmark U-
Net model; (h): Classification results of (e) from the proposed weakly supervised U-Net. The land
area is masked in white.

While numerical results offer insights into accuracy, visual analysis in Fig. 2 provides a more
qualitative assessment. The weakly supervised model significantly enhances mapping resolution,
particularly in identifying ice-water boundaries, polygon-based sea ice concentration, and partial
concentrations of different ice types. This improvement is evident in challenging seasons, such as
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melt and freeze-up periods. For example, in the SAR scene on the top of Fig. 2 (melt period),
the weakly supervised model is able to detect the detailed ice-water boundaries and ice with small
floe size surrounded by water precisely, while the benchmark model can only detect ice or water-
dominated areas with coarse resolution. For the SAR scene at the bottom obtained in freeze-up,
pixels dominated by young ice (with relatively low backscatter intensities) and multiyear ice (with
very bright pixel intensities) are well separated with significantly enhanced resolution using the
weakly supervised model. Additional visualization with zoom-in example can be found in Appendix
A.4

4 CONCLUSION

We introduce an automated pipeline for sea ice type classification using SAR imagery and ancil-
lary data, leveraging a weakly supervised U-Net. This approach holds potential for integration into
operational sea ice mapping for tactical navigation. By enabling precise prediction of sea ice type
distributions with high resolution, our method eliminates the need for per-pixel labels during model
training. To address the challenge of limited high-resolution ground truths, our classification model
employs weakly supervised learning techniques, incorporating regional labels and loss represen-
tations. This allows the utilization of region labels derived from ice charts with coarse resolution
directly for model training. The model is trained and validated using the recently released AI4Arctic
Sea Ice Challenge Dataset. Results demonstrate strong agreement between predictions and ice-type
distributions in ice charts, validated through visual interpretation. In future works, we’ll aim to test
our method on other datasets and state-of-the-art segmentation models.
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A APPENDIX

A.1 MODEL HYPERPARAMETERS

Table 3: Specifications of training the proposed model.

Optimizer Stochastic gradient descent
with momentum (SGDM)

Learning rate 0.001
Weight decay 0.01

Scheduler Cosine Annealing
Batch size 16

Number of iterations per epoch 500
Total epoch 50

Number of epochs for the first restart 50
Image Downscaling ratio 10

Patch size 256

Table 4: The input channels of the proposed model.
Input
type

Number of
channels Description

SAR imagery 2 Dual polarized Sentinel-1 SAR images in
HH and HV channels

Passive
microwave 2

AMSR2 brightness temperature data in
36.5 GHz in both horizontal and
vertical polarizations

Spatial
information 2 The latitude and logitude of each pixel

in the SAR imagery
Temporal

information 1 The acquisition month of the SAR
imagery

A.2 SIMPLIFIED EGGCODE

An overview of the ice egg code variables in the simplified egg code is presented in Fig. 3 (a).
Compared to the original egg code in WMO standard (Joint WMO-IOC Technical Commission for
Oceanography and Marine Meteorology, 2014), the information concerning the form of ice (floe
size) is omitted. The total concentration, Ct refers to the total SIC (Sea Ice concentration) of the
polygon. As Ca, Cb, and Cc correspond to the partial concentrations of the top 3 thickest ice types,
there is a relation that Ca+Cb+Cc = Ct. On the other hand, Sa, Sb, and Sc are represented by the
entry numbers in Table 1, so for e.g, in the most left egg code in Fig. 3(b), the value 9 represents Ct,
values 2, 7, 0 denotes partial concentration Ca, Cb, Cc respectively. Similarly, 3, 2, 0 represents the
class Sa, Sb, Sc. And the final ground-truth 4 dimensional vector would be Yi = {1, 2, 7, 0} where
the 1st element represents the concentration of water which is nothing but 1 - Ct.
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Figure 3: (a) Overview of the ice egg code parameters in the simplified egg code produced from
the original ice charts. Concentration values range from 0 (empty) to 10 (fully- covered) with each
increase of 1 representing a 10 percent concentration increase. (b) An example Ice chart showing
eggcode and conversion of eggcode to ground truth tensor.

A.3 LOSS FUNCTION: PSUEDOCODE

Algorithm 1: Polygon-based Loss Calculation Pseudocode based on Python
Data: polygon labels, pixel predictions, land masks, polygon maps
Result: total loss
total loss = 0
batch size = pixel predictions.shape[0]
for img id in range(batch size) do

polygon ids = np.unique(polygon maps[img id]);
for polygon id in polygon ids do

// get the label tensor for a certain polygon (polygon id)
polygon label = polygon labels[img id][polygon id]
// exclude the polygons that are masked out from loss

calculation
if polygon label == 255 then

loss = 0
total loss+=loss
continue;

// create a mask to mask out pixels outside the current
polygon

poly mask = (polygon icecharts[img id] == poly id)
// create final mask by removing land area from the

poly mask
final mask = poly mask ∩ land masks[img id]
// pixel-based SOD predictions within the current polygon
pixel AOI = pixel predictions[img id][final mask]
// aggregate and average over pixel-based predictions to

generate polygon-based prediction
polygon prediction = pixel AOI.sum(0)/pixel AOI[0].numel()
// calculate Cross Entropy loss between label tensor and

predicted tensor
loss = Cross Entropy(polygon prediction, polygon label)
total loss +=loss

return total loss
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A.4 ADDITIONAL VISUALIZATION

The zoom-in examples from Fig. 2 are provided in Fig 4. In the first column of Fig 4, the weakly
supervised model is able to detect the detailed ice-water boundaries and ice with small floe size
surrounded by water precisely, while the benchmark model can only detect ice or water-dominated
areas with coarse resolution. In the second column of Fig. 4, pixels dominated by young ice (with
relatively low backscatter intensities) and multiyear ice (with very bright pixel intensities) are well
separated with each other using the weakly supervised model.

Figure 4: Zoom-in examples of regions cropped from SAR scenes and corresponding predictions in
Fig. 2. First column: a region located within a polygon in Fig. 2 dominated by first-year ice. Second
column: a region located within a polygon in Fig. 2 consisting of both young ice and multiyear ice.
First row: regions in HH channel; Second row: regions in HV channel; Third row: overlay of HH
channel and predictions from benchmark model, with the color bar provided in Fig. 2; Fourth row:
overlay of HH channel and predictions from weakly supervised model.
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