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ABSTRACT

Hyperspectral imaging is an important tool used in plant health assessment. It
opens the door for early detection of plant stress which allows for timely interven-
tion and thus improved conservation efforts. However, the high cost and complex-
ity of hyperspectral cameras has limited their usage. To mitigate this issue, the
problem of reconstructing plant hyperspectral data from RGB images is investi-
gated. The proposed model reconstructs the visual and near-infrared range (400 -
1000 nm) while being trained solely on images of vegetation, in contrast with ex-
isting “generic”’ models. It is hypothesized that training a less complex model on
a specific material will achieve good accuracy even with a relatively small training
dataset. The HSCNN-D model is adopted with a simplified architecture. Despite
being much smaller than the original model, it achieves comparable performance
to state-of-the-art models on images of vegetation.

1 INTRODUCTION

Climate change and human expansion have continuously strained forest and agriculture lands over
the years. The result is an increase in plant diseases and pest infestations [Elad & Pertot (2014).
Plant health monitoring is an essential task for forest management teams and agriculturalists to limit
and possibly avoid a decrease in biodiversity and crop yield. Traditional plant health assessment
methods are based on visual inspection by experts |Steinman| (2000) which is laborious and time
consuming. It also suffers from grading bias, as multiple experts can provide different grading for
certain health parameters [Ferretti| (1998)).

To reduce this ambiguity and obtain more precise and accurate health assessment methods, studies
have explored the usage of remote sensing tools for plant health assessment [Lausch et al|(2016).
In particular, hyperspectral data has proved to be highly useful for health assessment [Kureel et al.
(2022) and species identification |Liu et al.| (2022). This type of data can be obtained from satellite
images (such as AVIRIS or sentinel-2) |Ahlswede et al.| (2022), or using hyperspectral cameras (on-
ground or by UAV) [Fraser & Congalton| (2021)). The former, while being freely available in some
cases, lacks the required spatial resolution for a proper assessment |Liu et al.| (2022)). Hyperspectral
cameras provide the required data with good spatial and spectral resolution. They come, however,
at a high cost and require complex data processing. This significantly limits their use. Multispectral
cameras are cheaper but lack the spectral resolution required for an in-depth analysis of plant health.

Recently, researchers have been investigating the reconstruction of hyperspectral images from RGB
images [Zhang et al.| (2022)). Multiple models have been proposed and tested on common datasets
such as those of the NTIRE 2018 |Arad et al.| (2018), NTIRE 2020 |Arad et al.| (2020), and NTIRE
2022 |Arad et al.| (2022) competitions. They focus on the reconstruction of hyperspectral data in
the 400-700 nm range at 31 bands of resolution, neglecting the near-infrared (NIR) band which is
crucial for plant health analysis. In particular, the HSCNN-D model proposed in |Shi et al.[(2018)
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and used in the NTIRE 2018 competition has been used extensively for plant health [Hamzah et al.
(2022); [Fu et al.| (2022)). Some studies have attempted to predict the NIR range from RGB images
such as [Shukla et al.| (2022); |Aslahishahri et al.| (2021) but have been limited to 1-2 bands.

In this paper, we develop a model that reconstructs both the visual and near-infrared range (400 -
1000 nm) from RGB images. Using RGB images to obtain such valuable information greatly im-
proves conservation programs and opens the door for citizen scientist to contribute to large scale
surveying of forest and agricultural lands. Indeed, we envision developing a simple tool (e.g., a
phone application) that can be used for plant health assessment. As such, this requires relatively
small models so that they can run locally on mobile phones. Currently available datasets are lim-
ited in size and the models proposed are too complex to use for on-edge computations. However,
considering that the reflectance of an object is material dependent, we hypothesise that training on
a dataset of vegetation only should reduce the required model complexity, data required, and train-
ing/inference time. To that end, we use a simplified version the HSCNN-D model |Arad et al.|(2018))
(i.e., reduced layers) and train it on a dataset of vegetation only to reconstruct the full scale VNIR
range. We investigate the effect of the number of bands predicted and different data preprocessing
techniques on prediction accuracy.

2 METHOD

2.1 DATASET

Our training is conducted on the Virginia Tech RGB-VNIR dataset Brown & Moser| (2021). It
consists of indoor/outdoor RGB images of everyday objects, cars, and vegetation, alongside the
corresponding hyperspectral images. This open source dataset is similar to the datasets used in the
NTIRE competitions|Arad et al.[(2018};2020;2022) with the advantage of covering the near-infrared
region and having a vegetation specific section. The latter contains 62 images of 9 different species
of trees and plants (each image has a 400 x 800 resolution). The hyperspectral images are generated
using the HS-CL-V10E SPECIM camera. It has a range of 400-1000 nm with a 1.4nm resolution and
a total of 420 bands. The dataset contains multiple images of the same object in different conditions
(atmospheric: cloudy, sunny; distance: near, far; different exposure levels), allowing us to train a
more robust model better suited for field applications.

Our comparisons with state-of-the-art models utilizes the NITRE competitions’ datasets. The com-
petition focuses only on the visible range: 400-700 nm, with a 10 nm resolution for a total of 31
bands. The datasets are significantly larger than the one we are using for training with the 2022
dataset containing around 1000 images |Arad et al.| (2022). As such, achieving a comparable accu-
racy with a smaller dataset is challenging.

2.2 PREPROCESSING

As in the NTIRE competition, our images are divided into 50 x 50 patches. We mainly focused on
segmentation: since we would like to train our model for vegetation only, we segmented the images
to exclude all other parts. The RGB images were first segmented using the Segment Anything
model (SAM) developed by Meta [Kirillov et al.| (2023). This allowed us to isolate the plant or tree
from the background. However, some parts of the background were still visible between leaves and
branches. A second segmentation step was added based on index thresholds. Multiple indices were
considered for segmentation, such as NDVI (normalized difference vegetation index) Rouse et al.
(1974), ExG (excess green index) Woebbecke et al.[(1995)), and the mean intensity ratio of red, blue
and green [Kawashima & Nakatani| (1998). Another method considered was converting all RGB
images to HSV color spectrum and isolating the pixels in the green color region only. After testing,
SAM followed by NDVI segmentation with a 0.5 threshold gave the best results and was used to
prepare the RGB masks.

2.3 MODEL

The model used in this study is the HSCNN-D model that was proposed in|Shi et al.| (2018)) and gave
the best results in the NTIRE 2018 competition (shown in Figure [I)).
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Figure 1: HSCNN-D model architecture (figure taken from [Shi et al.[(2018)))

It is mainly composed of three blocks: a feature extraction block, a feature mapping block, and a
reconstruction block. A schematic of the model used can be found in in Figure.2 in the supplemen-
tary material.Each block contains convolutional layers with 16 or 8 filters, and a ReLU activation
function.

The complexity of the architecture is mainly controlled by the feature mapping block. This block
adds 16 channels to the input tensor and is repeated b times, in series, across the pipeline, with the
default value being 60. The feature extraction and feature mapping pipeline is executed 3 times
(with different initialization), then the results are concatenated and passed to the reconstruction
layer. We introduced some slight modifications to prevent overfitting. Dropout layers were added in
the feature mapping blocks after each convolutional layer with a 0.25 dropout probability. Also, to
reduce computational cost, the value of b (number of feature mapping blocks) was varied between 5
and 10 as opposed to b = 60 used in the original model.

2.4 EXPERIMENTS

Most studies in literature imitate the NTIRE competition format by predicting 31 bands in the 400-
700 nm range. Other reconstructed the NIR at a multispectral level only |Aslahishahri et al.| (2021));
Fu et al.|(2022); |Shukla et al.|(2022). Based on this, several experiments were conducted to investi-
gate the following: 1) predicting 31 bands across the VNIR range, with and without segmentation;
2) predicting 42 bands across the VNIR range, with and without segmentation; and 3) predicting
61 bands across the VNIR range (equivalent to the same spectral resolution as the NTIRE com-
petitions). Five-folds cross validation was used during training. Different values of L, and L4
regularization were also investigated. The loss function used is the MRAE (mean relative absolute
error) as in the NTIRE competitions in addition to the RMSE (root mean square error). The loss
function was adjusted in order to account only for the losses of the region of interest (i.e., ignoring
the masked areas). The models were trained on a high performance computing cluster (HPC), with
128 GB RAM allocated and one NVIDIA V100 tensor core GPU.

3 RESULTS AND DISCUSSION

The MRAE and RMSE validation results for multiple trials are shown in Table[I] All results were
obtained using Lo regularization with an alpha value equal to 0.01, and training for 500 epochs.

n | b | Segmentation | MRAE | RMSE
8

31 None 0.4591 | 0.2537
3118 | SAM 0.3150 | 0.1194
42 | 10 | SAM 0.297 0.1267

42 | 10 | SAM + NDVI | 0.268 0.105
61 | 10 | SAM+HSV | 0.49 0.165

Table 1: Experimental results for different trained models. n is the number of reconstructed bands.
b is the number of duplicated feature mapping blocks

The effect of segmentation can be clearly seen in the results in Table [I} For n = 31 bands and
b = 8 duplicate feature mapping blocks, the MRAE drops significantly (from 0.46 to 0.32) after
applying SAM segmentation. Even refining the segmentation from SAM to SAM+NDVI improves
performance as can be seen from the third and fourth row of the table.
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3.1 ERROR ANALYSIS

Our best result is highlighted in red, wherein we trained a model with b = 10 duplicate feature
mapping blocks to learn n = 42 bands. Henceforth , we will refer to this model as HSCNN-Veg.
It achieves an MRAE smaller than 0.27. To put this number into context, an MRAE of 0.27 would
rank among the top 10 performing models in the NTIRE 2022 competition |Cai et al.|(2022a). In
other words, for the hyperspectral image reconstruction problem, this is a reasonably small error.

To better understand the behavior of the model, we computed average errors for the visible and
near-infrared range separately. The average MRAE in the visible range (400-700nm) is 0.232, while
it is 0.314 in the near-infrared range (700-1000 nm) and 0.229 in the 400-800 nm range. As such,
we notice that a large contribution of the error is due to the 800-1000 nm range. Some bands had a
more sizeable contribution to this error, especially at 400 nm, 1000 nm, and 987 nm. This might be
caused by the camera used. Recomputing the error without these three wavelengths resulted in an
average MRAE of 0.195,0.202, and 0.283 for the 400-700 range, 400-800nm range, and 700-1000
nm range respectively.

To get a better understanding of the effects of different image properties (such as weather, distance
from object, plant species) on our task, we conducted an analysis of variance (ANOVA) on each
wavelength with respect to these groups.

Results revealed that the mean reflectance in an image is affected by the species of the tree and/or
plant for all 420 wavelengths. Weather conditions showed to affect all wavelengths except in the
500-600 nm range where they achieved a p-value> 0.1. The distance from the object was found
to be statistically significant when studying the variation in the 532-565 nm and 700-929 nm. Note
that the findings regarding the distance are less reliable due to the change of camera angle with the
change of distance (which may affect the measured reflectance) .

3.2 COMPARISON WITH ORGINAL HSCNN-D

Finally, we compare the performance of our HSCNN-Veg model with the performance of the
HSCNN-D model trained on the NTIRE 2022 dataset (weights obtained from |Cai et al.| (2022b)).
To that end, we considered 14 images of trees and plants from the NTIRE 2022 dataset. Note that
this comparison is done in the visible region only, limited by the available data from the NTIRE
2022 competition. Results are shown in Table 2] Remarkably, our model produces a smaller MRAE

HSCNN-Veg | HSCNN-D
Average MRAE | 1.5238 2.9263
Median MRAE | 0.6874 1.4949

Table 2: Comparison between HSCNN-D 2018 model and our HSCNN-Veg model using 14 plant
and tree images from the NTIRE 2022 competition.

on average (and in fact for most cases) despite being trained on a much smaller dataset and having
smaller size overall. However, both models perform very badly on some samples (hence the large
difference between the average and the median values).

A main advantage of the HSCNN-Veg model is its practicality due to its relatively small size. In
particular, it uses around 683,000 parameters (i.e., around 5.2 MB to store model parameters) and
requires less than 900 MB of RAM when evaluating an image. Therefore, such a model is small
enough to run locally on mobile phones. By contrast, the HSCNN-D model has over 9,200,000
parameters (i.e., more than 70 MB to store model parameters) and requires a minimum of 64 GB of
RAM required for inference ngchc| (2019)).

The testing results underline the need for more data in order to improve the generalizability of the
models for real world application. A similar conclusion was reached in the NTIRE 2022 compe-
tition |Arad et al.[ (2022). Nonetheless, the model proposed in this study was able to outperform
the original model while having a simpler architecture and being trained on a smaller dataset. This
indicates that training on a specific type of material and understanding the varying factor that affects
model performance significantly improves the learning process.
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4 CONCLUSION

In this study, the reconstruction of the reflectance spectrum for vegetation in the range of 400-
1000 nm was investigated. The HSCNN-D model with reduced number of layers was trained on
a dataset containing 62 images of plants and trees. It achieved an average MRAE of 0.27 which
is comparable to state-of-the-art models showcased in the NTIRE 2022 competition. The modified
model also outperformed the original HSCNN-D on the NTIRE 2022 dataset, while having fewer
parameters and requiring significantly less memory for inference.

Achieving such results on a much smaller dataset and architecture underlines the efficiency of train-
ing a model for specific applications and on targeted material types. The demonstrated practicality
of the model enables its usage on smartphones and facilitates field applications. Future works will
concentrate on building a larger hyperspectral dataset for vegetation only and investigating the ap-
plicability of this method for early stress detection in plants and trees.
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