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ABSTRACT

Passive Acoustic Monitoring provides an important tool for wildlife monitoring. Deep
Learning and the use of convolutional neural networks have become the common approach
to create bioacoustic classifiers. However, in order to perform these tasks in real-time,
standard approaches suffer from high model complexity and computationally expensive
pre-processing steps (such as downsampling). In this paper we introduce a genetic algo-
rithm named ESO, designed to optimise the input spectrogram size by focusing on specific
regions. This approach allows for significant reduction in model complexity (91%) and
inference time (70%) with minimal impact on the F1-Score (4%). We furthermore develop
a simple-to-use Graphical User Interface and Python package to run the algorithm. All our
code is available on GitHub1.

1 INTRODUCTION

Wildlife monitoring is critical, especially for species which are declining at an alarming rate, or which are
already on the brink of extinction (Almond et al., 2022). Passive acoustic monitoring (PAM) represents one
method of monitoring wildlife by deploying multiple digital sound recorders, generally in remote areas, for
extended periods. This method enables the study of species that are challenging to observe by identifying
their vocalisations, or calls, within the acoustic recordings (Penar et al., 2020; Teixeira et al., 2019). Clas-
sification and detection algorithms are usually applied to the acoustic data after it has been retrieved and
downloaded. This is primarily due to the fact that modern classification and detection algorithms use deep
learning methodologies which are not easily implemented on recording devices. Developing real-time PAM
systems remains an active area of research which offers great potential for immediate conservation actions
to take place.

Deep learning algorithms, such as convolutional neural networks (CNNs), have become the common ap-
proach to solving classification tasks in bioacoustics (Stowell, 2022). This approach relies on pre-processing
acoustic signals into spectrograms, which are visual representations of sounds used as inputs by the CNN. A

1https://github.com/ufuk-cakir/ESO
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spectrogram displays the spectrum of frequencies of the acoustic signal over time. Spectrograms can pose a
challenge when training CNNs in data scarcity situations. Large spectrograms result in a larger number of
CNN parameters, which in turns hinders the implementation of CNNs on low-resource devices.

Typically, prior to the creation of a spectrogram, pre-processing techniques such as low-pass filtering and
downsampling are applied to the audio signals. These operations are computationally expensive, and this
issue is accentuated when using low-resource devices. As a result, the development of real-time PAM
systems on low-resource devices requires the least amount of computation to be performed so that acoustic
signals can be pre-processed and processed by the CNN rapidly in real-time.

As a means of contributing methodologies to facilitate real-time PAM systems, we propose an Evolution-
ary Spectrogram Optimisation (ESO) algorithm to reduce the size of spectrograms, and to reduce the total
amount of computation performed in a PAM CNN classifier. ESO is based on a genetic algorithm (GA).
A GA is an optimisation method inspired by natural selection, where a population of candidate solutions
evolves over generations through nature-inspired processes like reproduction, selection, crossover, and mu-
tation (Kumar et al., 2010; Eiben et al., 1994). In this study, we adapt the GA to reduce spectrogam represen-
tations to select and extract narrow bands within the spectrogram. The bands serve as input to a CNN model,
i.e. the bands represent extracted portions of the original spectrogram. ESO thus optimises the selection
and size of each of these bands to maximise classification score and minimise CNN parameters. Addition-
ally, in ESO, spectrograms are generated without low-pass filtering and downsampling. When compared to
using the full spectrogram, our findings reveal that ESO can reduce the computation time by 70%, reduce
the CNN parameters by up to 90%, and significantly improve the inference time. ESO provides the ability
to implement real-time PAM systems which could be implemented directly in field studies on low-resource
edge devices.

2 METHODS

2.1 HAINAN GIBBON DATASET AND BASELINE MODEL

To assess the efficiency of ESO to automatically identify bands of interest within spectrograms for bioacous-
tic classification, we used the publicly available Hainan gibbons dataset (Dufourq et al., 2021). This dataset
consists of 220 hours of annotated acoustic files recorded at 9600 Hz using passive acoustic recorders. Using
this dataset, ESO was tasked to optimise the bands which would serve as input to the CNN classifier. The
CNN output represents the presence or absence of Hainan gibbon calls from large audio files, of up to 8
hours in duration.

Dataset Creation – To compare ESO with the traditional approach of involving pre-processing steps (low-
pass filtering and downsampling), we constructed two datasets. One dataset consists of spectrograms gener-
ated after downsampling and low-pass filtering similar to Dufourq et al. (2021). The other dataset consists
of spectrograms generated directly from the raw acoustic files. In the first case, the acoustic files were down-
sampled to 4800 Hz, and high-frequency noise was eliminated by applying a low-pass filter to each recording
with a cutoff rate of 2000 Hz. Subsequently, the files were segmented into four-second windows according
to manual annotation and transformed into spectrograms, resulting in images sized at 128×76 pixels. In the
second case, the files were only segmented into windows before being transformed into spectrograms sized
at 128× 151.

We randomly split both datasets into train-validation-test (60 - 20 - 20). We obtained 17, 130 four-second
windows (7, 978 gibbon calls, 9, 152 no-gibbon calls) for each training dataset, 5, 319 windows for the
validation dataset (2, 590 gibbon calls, 2, 729 no-gibbon calls) and 5, 774 windows for the testing dataset
(3, 423 gibbon calls, 2, 351 no-gibbon calls). We performed data-augmentation similarly to Dufourq et al.
(2021) to obtain a balanced training dataset (9, 152 gibbon calls, 9, 152 no-gibbon calls).
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Baseline Model – For the automated classification of Hainan gibbon calls, and as the baseline model for
this study, we used a similar architecture as in Dufourq et al. (2021). The baseline model consists of a
simple CNN architecture, featuring one convolutional layer with 8 filters of size 8×8 and ReLU activations,
followed by max pooling (4× 4), a flattening operation, and two fully-connected layers (32 ReLU units and
2 softmax units, respectively). The final softmax layer provides the probability that the input spectrogram
contains a gibbon call or not. For the baseline CNN we used the dataset created with downsampling and
low-pass filtering. We trained the baseline CNN on the training data and evaluated its performance on the
validation data by calculating the F1-score. This F1-score, together with the number of trainable parameters
of the baseline model, was recorded and used as reference values by the ESO algorithm as a means of
comparison.

2.2 ESO: EVOLUTIONARY SPECTROGRAM OPTIMISATION

Genetic Algorithm – The GA begins by creating an initial population of randomly initialised solutions for
the problem to be solved. Each solution, also known as an individual, is represented by a chromosome.
A chromosome is defined by a specified number of genes, where each gene encodes the information for
one specific parameter of the solution. A new generation is produced from the initial population, with each
individual being evaluated through a fitness function. Similar to natural selection, only the individuals with
the best fitness are selected to form the new population.

Genetic Operators – Chromosomes for the next generation, also called offspring, are created using a re-
productive process that includes natural genetic operations, such as crossover and mutation, to generate
potential new solutions and explore other combinations of genes. Mutation creates a new chromosome by
adding a small random variation to one of the genes inside a selected chromosome. Reproduction copies a
chromosome from the current generation to the next one, whereas crossover creates two new chromosomes
by exchanging genes from the parents. The process of evolution is then iterated through a predetermined
number of generations or until some end condition is satisfied.
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Figure 1: The image shows a four-second window spectrogram with a Hainan gibbon vocalisation. Each
gene encodes one band defined by the band position Pt, P

′
t (origin top left) and band height h. A chromosome

as a collection of genes defines which bands to extract from the spectrogram images. The extracted bands
are then stacked, as shown in the bottom right corner. The effectiveness of each chromosome to result in the
best classification score is evaluated by the fitness function (bottom right of the chromosome), as defined in
Equation 1.
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ESO Chromosome – Each gene within ESO encodes the information of one band in the spectrogram image,
which is uniquely defined by its band position and band height (measured in pixels). We define a band as a
horizontal region constructed from two points, Pt being the top of the band, and the Pb = Pt + h being the
bottom and h the height of the band. Positions Pt and Pb are selected between the origin to the bottom left
of the spectrogram. Figure 1 shows two bands within a chromosome. An ESO chromosome thus outputs
various extracted bands from a spectrogram, which are stacked on top of each other. Thus, when applying
one chromosome to a training dataset, the chromosome produces a modified (compressed) dataset which can
then be used to train a CNN. For each chromosome, we trained a CNN on the stacked extracted bands of the
spectrograms (bottom right of Figure 1), using the training dataset generated without low-pass filtering and
downsampling. We used the same architecture as the baseline model, but with a smaller input shape (given
the new stacked dataset), and hence less trainable parameters. We calculated the F1-score on the validation
dataset and evaluated each chromosome using the fitness function defined by:

Fitness = −λ1
F1base − F1chromosome

F1base
+ λ2

pbase − pchromosome

pbase
(1)

where λ1, λ2 are hyper-parameters, F1 represents the F1-score on the validation set obtained by the baseline
model and by the chromosome and p is the number of trainable parameters of the chromosome and baseline
model.

The proposed fitness function enables ESO to optimise a trade-off between model performance (F1-score)
and model complexity (number of trainable parameters) while always comparing to the baseline model. The
hyper-parameters λ1 and λ2 influence this trade-off.

ESO Algorithm – Each run of the ESO algorithm consists of randomly initialising the first population,
training all chromosome CNNs on the training dataset and evaluating their performance on the validation
dataset to calculate their fitness. The next generation of chromosomes is then created using the selection and
genetic operators to explore the space of possible band combinations. In this context, mutation introduces
a random shift from a predefined range to the band positions, while crossover exchanges randomly selected
bands from two parent chromosomes. The best chromosome in terms of fitness value is saved at each
generation, and the best chromosome over all generations is considered as the final solution.

We trained both the baseline model, and the best ESO chromosome for 40 epochs using the Adam optimiser
(Kingma & Ba, 2017) and cross entropy loss, and we evaluated both approaches on the test set to get our
final results. To contribute towards accessible tools, we enabled ESO to be executed using a Python package,
or through a Graphical User Interface with full control over hyper-parameters and a built-in Tensorboard to
check the training progress.

3 RESULTS

We ran the ESO algorithm on the Hainan gibbon dataset and averaged the results across ten runs, by keeping
all hyper-parameters (see Appendix A.1) fixed (e.g 10 generations, 20 chromosomes per population, two to
six genes per chromosome). The best chromosome across all generations was obtained and applied to the
test set. Similarly, the baseline was applied to the test set, and we compared the two approaches.

The findings from Table 1 reveal that on average, ESO decreases the number of trainable parameters by
90%, the input image size by 50% and inference time by 70% with a trade-off by 4% lower F1-Score. This
result shows that ESO can significantly boost inference time and reduce model complexity, both of which are
the limiting factors of common passive acoustic monitoring approaches in the context of real-time wildlife
monitoring. When using 10 generations and a population of 20 chromosomes, ESO took approximately 1 h
when executed on consumer GPU hardware (NVIDIA GeForce GTX 1050 Ti, 4 GB) which shows that ESO
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Table 1: Average performance metrics of models over ten runs with a population size of 20. Note that
inference is the time it took to process the raw audio (40 hours) and get predictions. For the baseline model
this includes downsampling and low-pass filtering the raw audio files. While ESO had a 4.23% drop in F1-
Score, there were significant reductions in trainabale parameters, total computation performed, and inference
time – thus revealing that ESO contributes towards real-time PAM systems.

Metric Baseline ESO Difference (%)
Accuracy 0.96 0.94±0.00 −2.01±0.00

Sensitivity 0.95 0.92±0.01 −3.16±1.05

Specificity 0.97 0.95±0.01 −2.06±1.03

Precision 0.92 0.88±0.02 −4.35±2.17

F1-Score 0.94 0.90±0.01 −4.26±1.06

Parameters 132, 234 11, 863±247 −91.03±0.19

Image Size 9, 728 4, 817±800 −50.48±8.22

Inference time [s] 376.1 106.9 −71.58

does not require high-end GPU resources to be effective, hence making it a powerful and accessible tool for
researchers.

4 CONCLUSION

Our study has shown that an evolutionary optimisation approach coupled with deep learning can signifi-
cantly reduce the model complexity and the inference time while achieving comparable performance with
a model trained on spectrograms generated from pre-processed audio files. These results therefore suggest
that the ESO method could pave the way to the development of real-time monitoring techniques which could
be performed in the field on low-powered edge devices. The development of a GUI aims to provide a pow-
erful and simple to use tool for the ecology community. Future experiments will take into account datasets
with animal vocalisations in different frequency regions and further improvements of the algorithm such as
parallelisation if multiple GPUs are available for training.
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A APPENDIX

A.1 HYPER-PARAMETERS

We choose following hyper-parameters for our experiments:

settings = {
"algorithm": {"max_generations": 10},
"genetic_operator": {

"mutation_rate": 0.1,
"crossover_rate": 0.8,
"reproduction_rate": 0.1,
"mutation_height_range": 0,
"mutation_position_range": 10,

},
"selection_operator": {"tournament_size": 10},
"data": {

"force_recreate_dataset": False,
"keep_in_memory": False,
"train_size": 0.8,
"test_size": 0.2,
"reshuffle": False,
"positive_class": "gibbon",
"negative_class": "no-gibbon",

},
"preprocessing": {

"lowpass_cutoff": 2000,
"downsample_rate": 4800,
"nyquist_rate": 2400,
"segment_duration": 4,
"nb_negative_class": 20,
"file_type": "svl",
"audio_extension": ".wav",
"n_fft": 1024,
"hop_length": 256,
"n_mels": 128,
"f_min": 4000,
"f_max": 9000,

},
"population": {"pop_size": 20},
"gene": {

"min_position": 0,
"max_position": -1,
"band_height": 11,

},
"chromosome": {

"min_num_genes": 1,
"max_num_genes": 4,
"lambda_1": 0.7,
"lambda_2": 0.3,

},
"model": {

"optimizer_name": "adam",
"loss_function_name": "cross_entropy",
"num_epochs": 40,
"batch_size": 64,
"learning_rate": 0.001,
"shuffle": True,
"metric": "f1",

},
}

A.2 GRAPHICAL USER INTERFACE

An overview of how the Graphical User Interface for the ESO algorithm is shown in Figure 2.
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Figure 2: Graphical User Interface for the ESO Algorithm

The GUI additionally has the option to launch a TensorBoard session to track training progress across dif-
ferent runs and tune hyperparameters in the parallel coordinates view.
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