
ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

BOOTSTRAPPING RARE OBJECT DETECTION IN HIGH-
RESOLUTION SATELLITE IMAGERY

Akram Zaytar∗ Caleb Robinson Gilles Q. Hacheme Girmaw A. Tadesse

Rahul Dodhia Juan M. Lavista Ferres Lacey F. Hughey Jared A. Stabach

Irene Amoke

ABSTRACT

Rare object detection is a fundamental task in applied geospatial machine learn-
ing, however is often challenging due to large amounts of high-resolution satellite
or aerial imagery and few or no labeled positive samples to start with. This paper
addresses the problem of bootstrapping such a rare object detection task assum-
ing there is no labeled data and no spatial prior over the area of interest. We
propose novel offline and online cluster-based approaches for sampling patches
that are significantly more efficient, in terms of exposing positive samples to a
human annotator, than random sampling. We apply our methods for identify-
ing bomas, or small enclosures for herd animals, in the Serengeti Mara region of
Kenya and Tanzania. We demonstrate a significant enhancement in detection ef-
ficiency, achieving a positive sampling rate increase from 2% (random) to 33%.
This advancement enables effective machine learning mapping even with minimal
labeling budgets, exemplified by an F1 score on the boma detection task of 0.36
with a budget of 300 total patches.

1 INTRODUCTION

Rare object detection over remotely sensed (satellite, aerial, drone) imagery is a common task in
geospatial machine learning with applications ranging from identifying damaged structures in post-
disaster imagery [7; 10], renewable energy infrastructure mapping at country and global scales [6],
to ecological studies like counting large mammals over vast landscapes [16]. The nature of such
tasks is that they are often not accompanied by relevant labeled datasets – if such datasets existed
over the area of interest (AOI), then there would not be a need to solve the task in the first place.
As such, a first step in any rare object detection task is often manually finding few instances of the
rare object, i.e., positive class examples, that can then be used to bootstrap a few-shot model-based
approach [3; 18].

It is possible to incorporate known spatial priors into the bootstrapping process in some object de-
tection tasks. For example, to find examples of damaged structures in post-disaster satellite imagery,
it is possible to search over known existing structures instead of over the entire AOI, dramatically
reducing the search space. However, in other problem instances, such as finding large mammals in
high-resolution satellite/aerial imagery, the expected spatial distribution of the object of interest is
less obvious.

Similarly, in some problem instances, it is possible to substitute related label datasets to bootstrap
the modeling process. For example, OpenStreetMap (OSM) contains a large amount of data on
solar photovoltaic plants and windmills [1] that can be joined with satellite imagery to train machine
learning models that can then identify solar panels and windmills in imagery. However, such models
will be limited by the coverage of existing labels and accompanying imagery. For example, the
coverage of OSM data varies greatly by country, and imagery from different countries can vary
greatly, therefore models trained under such conditions may easily fail to generalize over the entire
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Figure 1: Bootstrapping rare object detection. Given input imagery, we create a grid of image
patches, initialize a sampling surface over the same grid, and sample iteratively from the surface
looking for rare object instances until we hit a budget limit. Sampling strategies that surface these
rare objects more frequently than random allow for quicker instantiating of model based methods
for finding such objects.

AOI. Domain adaptation methods using synthetic imagery [6; 9], strong augmentation [19], and
near-class object detectors [8] have all been proposed to alleviate this problem, but the fundamental
problem of how to start modeling given a novel application and no labels remains an open problem
in the state-of-the-art rare object detection literature.

In this paper, we formulate and address the basic problem of bootstrapping a dataset of positive
rare object samples under the assumptions of no initial labeled data and no spatial priors. We
propose novel offline and online clustering-based methods for selecting initial patches to annotate
that only depends on imagery inputs, and a way to set the parameters of these methods without
labels. Generally, our approach relies on the intuition that rare objects will, by definition, appear
differently than their surroundings.

We apply our approach on the real-world problem of identifying Bomas from satellite imagery in
the Serengeti Mara, a region of high ecological importance in Kenya and Tanzania. The distribution
of Bomas is critical for various ecological and conservation efforts [15]. Our approach significantly
increased the positive sampling rate from 2% to 33%, this sampling efficiency translates to the
downstream task of Boma detection, achieving an F1 score of 0.36 with just 300 initial labels.

The implications of this research extend beyond the specific case study, offering a scalable and
efficient framework for rare object detection in various geospatial and remote sensing applications.

2 PROBLEM FORMULATION

We assume that we are given a large unlabeled high-resolution satellite imagery scene, X, that covers
some AOI and a limited labeling budget, b (i.e., total area of imagery that can be labeled). We would
like to detect some instances of a rare object class in X in order to bootstrap a modeling process.
Specifically, we are looking for n+ positive instances, i.e. examples of the object. While we look
for the positives, we will annotate a number of negative instances, n−, i.e. where the rare object is
not present. Our objective is thus to minimize n−

n+ using b labelling iterations (or budget).

To achieve this, we split X into an H×W grid of non-overlapping image patches. For each grid cell,
Xi,j , we assign a probability, Pi,j , thus initializing a sampling surface, P (i.e. a discrete probability
distribution on a 2D grid). We discuss different strategies for initializing P in Section 3. We then
use a sampling strategy to choose b patches for a labeler to annotate.

3 METHODS

Our framework for bootstrapping rare object detection in X depends on two steps: initializing the
sampling surface, and defining a sampling strategy to select b patches while, optionally, updating
the sampling surface (as shown in Fig. 1).

Initializing the sampling surface: Naively, we can use equal weights to initialize the sampling
surface as a Uniform baseline, i.e., Pi,j = 1

H∗W ,∀i, j. We further propose cluster-based ap-
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proaches that extract feature vectors for each image patch Xi,j using 3 different strategies: 1) RCF—
uses random convolutional features [11] to extract color/texture feature vectors; 2) ColorStats—
calculates the mean, standard deviation, minimum, and maximum values for each channel in
Xi,j , providing a simple representation of the colors in a patch; 3) Pre-trained ResNet—
employs a pre-trained ResNet-18 [5] to extract a feature representation. The clustering step as-
signs each grid cell into one of several clusters based on its feature representation. Here we utilize
KMeans & Bisecting K-Means [14] with a hyperparameter for the number of clusters, K, and
DBSCAN [2] with hyperparameters for the maximum distance between two samples to be neighbors,
ϵ, and the number of neighbors of a point to be considered a core point, η. We describe an unsu-
pervised method for choosing these hyperparameters based on the silhouette score [13] in Appendix
Section 1.

We use the feature representations per patch to fit the clustering algorithm, resulting in K clusters,
where each Xi,j is assigned to one of the clusters. We then initialize Pi,j based on the inverse size
of the cluster that Xi,j is in. Specifically, let Ci,j be the size of the cluster that Xi,j is in, then:

Pi,j ←
1

K
∗ 1

Ci,j
,∀i, j (1)

Sampling strategies: Once P is initialized, we can sample from it with methods from two broad
categories: 1.) offline sampling where Pi,j do not change based on incoming online annotations;
and 2.) online sampling where we use the incoming annotations to change the probability surface.
Specifically, we propose the Online and Proximity methods. In the Proximity sampling
method, if we sample a positive, then we increase the probability of all neighboring patches within a
set radius, r, by some weight, w, following the intuition that rare objects may be clustered in space.
Similarly, in the Online method we increase the probability of patches that are in the same cluster
as the sampled positive by w. In both cases, we sample fromP without replacement and renormalize
after reweighting based on observed positives.

With both online and offline methods, we sample until we exhaust our budget, after which we can use
the set of found positives, negatives, and unlabeled patches to train a downstream machine learning
model for object detection.

4 CASE STUDY: BOMA MAPPING IN THE SERENGETI MARA

We apply our methods in a case study for finding “bomas” in high-resolution satellite imagery cap-
tured over the Serengeti Mara region of Kenya and Tanzania. Bomas are temporary cattle enclosures
used by local population that are relatively rare given the low population density of the region. Infor-
mation on boma locations are crucial for identifying human-predator conflict hotspots and, as such,
are used by organizations such as the Kenya Wildlife Trust.

We use 3 pansharpened WorldView-2 satellite scenes with 50cm/px spatial resolution. Combined,
the images cover approximately 4, 300 km2 over three points in time (August 6th, 2022, January 2
& October 8 2020). We have polygon based labels for all bomas in these scenes from prior work
which we use to run simulations.

Bootstrapping For our experiments we choose 3 low-resource labeling budgets of 300, 950, and
3000 image patches to evaluate different sampling strategies. For Proximity weighting, the ra-
dius was set at r = 200 m, informed by previous knowledge of Boma settlement patterns. For
both Proximity and Online, a value of w = max(Pij) (highest initial weight) was used. For
clustering-based methods for initializing the sampling surface, we set hyperparameters (including
which feature representation to use) based on an unsupervised method described in Appendix Sec-
tion 1 that attempts to create clusters of rare objects. After setting the hyperparameter values, we
compared the performance of various sampling approaches (i.e., Uniform, Proximity, and clus-
tering methods in both Offline and Online scenarios using three labeling simulations per method. We
report the number of positives samples found with each method in Table 1.

Downstream training Each bootstrapping method produces a set of positive and negative labels
that were used to create training sets for the downstream task of semantic segmentation of bomas.
Our aim is to assess the benefit provided by each method in the task of rare object detection. To this
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Sampling Strategy 300 Patches 950 Patches 3K Patches
n+(%) CE RCE n+(%) CE RCE n+(%) CE RCE

Random 1.6 ± 0.2 .00 ± .00 .06 ± .14 1.5 ± 0.3 .05 ± .07 .33 ± .19 1.8 ± 0.3 .62 ± .05 .65 ± .04
Proximity Weighting 14.0 ± 2.8 .00 ± .00 .15 ± .12 16.5 ± 6.4 .06 ± .07 .42 ± .19 14.0 ± 1.1 .55 ± .17 .76 ± .02

Static DBSCAN 3.3 ± 0.7 .00 ± .00 .00 ± .01 2.8 ± 0.2 .01 ± .01 .30 ± .16 4.0 ± 0.01 .60 ± .21 .70 ± .03
Adaptive DBSCAN 3.3 ± 0.4 .00 ± .00 .02 ± .02 5.2 ± 1.1 .04 ± .05 .31 ± .21 7.1 ± 0.2 .51 ± .23 .55 ± .24

Static KMeans 13.3 ± 3.3 .05 ± .08 .30 ± .23 28.9 ± 8.2 .13 ± .10 .72 ± .04 29.4 ± 4.2 .57 ± .21 .75 ± .04
Adaptive KMeans 28.3 ± 8.6 .03 ± .07 .18 ± .07 32.6 ± 7.7 .16 ± .13 .42 ± .17 28.1 ± 2.2 .46 ± .20 .65 ± .19

Static BKMeans 6.0 ± 0.8 .01 ± .01 .28 ± .18 6.1 ± 0.2 .19 ± .12 .71 ± .03 5.6 ± 0.2 .73 ± .03 .77 ± .02
Adaptive BKMeans 19.0 ± 1.0 .06 ± .14 .36 ± .10 39.0 ± 8.6 .36 ± .25 .70 ± .13 33.6 ± 4.8 .48 ± .23 .76 ± .01

Table 1: Results of various sampling strategies across different labeling budgets (300, 950, and
3,000 patches). We report the percentage of identified positive instances (n+) and downstream task
performance of a U-Net model trained with the resulting samples for each sampling strategy. We
report F1 scores at an object level for models trained with Cross Entropy (CE) and Regularized
Cross Entropy (RCE) losses. Note BKMeans refers to Bisecting KMeans.

end, we report object-level F1 scores over unseen patches in Table 1. We maintained a consistent
training setup across all methods, utilizing a U-Net [12] architecture with a ResNeXt50 (32x4d)
backbone [17], and training for up to 200 epochs. The AdamW optimizer was employed alongside
data augmentation techniques, including flipping, rotation, and color jitter. Our training approach
encompassed two loss configurations: 1) traditional cross-entropy loss (CE), and 2) regularized cross
entropy (RCE) loss - a hybrid loss that combines cross-entropy for labeled pixels with an entropy
minimization regularization term for unlabeled patches, formulated as J(y, ŷ) = ρ(CE(y, ŷ) ⊙
YL)+ (1− ρ)(H(ŷ)⊙YL̄). Here, ρ represents the proportion of labeled pixels, H signifies entropy,
YL is the binary mask for labeled pixels, and YL̄ indicates the mask for unlabeled pixels. This
is a semi-supervised training technique based on [4] that aims to minimize the class entropy of
predictions over unlabeled pixels, which stabilizes training in low-label settings.

4.1 RESULTS AND DISCUSSION

Our experiments demonstrate that all methods significantly surpass the uniform sampling baseline
in identifying rare objects (see Table 1). Notably, Online Bisecting KMeans increased the
sampling ratio from 2% (i.e., the object’s density over the AOI) to 39% in the 950 patch scenario and
33% in the 3,000 patch scenario. In the 950 patch scenario, the Online Bisecting KMeans
method found 26× as many positives as uniform sampling—human annotators would need to pro-
cess an additional 23,750 patches under the uniform sampling method to find an equivalent number
of positives.

For the downstream task of detecting Bomas, the improved sampling strategies translated into no-
table gains in object detection performance, especially at lower labeling budgets. For instance, while
uniform sampling fails with a budget of 300 patches, Online Bisecting KMeans achieves an F1 score
of 0.36. Overall, the cluster-based and online sampling methods achieve the best down-stream per-
formance with a best result of 0.77 F1 at the largest labeling budget. We find the advantage of
these sampling techniques diminish as more labels become available, which is where other search
methods can also take over.

Finally, we find that the inclusion of the entropy regularization term (RCE) consistently boosted
performance across all experiments. While not the focus of this paper, this result warrants further
exploration across other low-label modeling problems.

5 CONCLUSION

In this paper, we formalized the challenge of label bootstrapping for rare object detection in satellite
imagery, establishing benchmark results for both heuristic-based methods, like proximity weighting,
and clustering-based approaches. In our case study, the proposed methods significantly improved
the positive sample identification rate from 2% to 33%, while enabling machine learning mapping
with minimal labeling resources, achieving an F1 score of 0.36 with just 300 labeled patches. We
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hope this work paves the way for the exploration of bootstrapping strategies for geospatial ML and
their connections to adjacent techniques in active learning and subset selection.
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1 UNSUPERVISED METHOD FOR CHOOSING HYPERPARAMETERS

Our proposed methods for initializing a sampling surface involve 1.) computing some feature repre-
sentation per image patch (we test three methods); and 2.) clustering these representations in some
manner (a method that will require some hyperparameter choice, e.g. K in KMeans). As we assume
that we have no access to labeled data, or more generally, any prior information about the distribu-
tion of the object of interest, there is a large question of how to set the parameters of our method.
Here we propose an unsupervised approach based on the silhouette score [1].

Rousseeuw [1] define a silhouette coefficient given a clustering of data and a data point xi that is the
ratio si =

bi−ai

max(ai,bi)
. Here ai is the mean intra-cluster distance of xi, i.e. the average distance to

data points in its own cluster, and bi is the mean nearest cluster distance, i.e. the average distance to
all data points in the nearest cluster. The silhouette score is the average silhouette coefficient over
all data points in a dataset and can range from −1 (indicating that all samples are in wrong clusters,
i.e. closer to other clusters than to the cluster they are assigned) to 1 (indicating that samples are
well clustered).

We find that the silhouette score from a choice of feature representation and clustering method hy-
perparameters is highly correlated with the number of samples required to find 100 positive samples.
For example in Figure 1 we show the number of samples required to find 100 positive samples with
the Offline KMeans for different feature representations and choices for k. Overall, the ex-
pected number of samples is minimized when the silhouette score is also minimized, and there is
high correlation between the two for each feature representation (e.g. R2 = 0.93 when using MO-
SAIKS based representations). Given this, we use a Bayesian hyperparameter search to minimize
the absolute value of the silhouette score given all free parameters, and use the resulting values in
each experiment.

2 LABELING SIMULATIONS FOR SAMPLING FUNCTIONS

After finding suitable hyperparameters for each clustering method, we simulate 3 annotation runs
per method. Figure 2 plots a log-scale running budget versus the number of found positives for
various selection algorithms.

The results show that adaptive clustering methods, which initialize weights based on cluster sizes
and change the sampling surface when positive samples are found, perform better. We also note
that some methods are perform better at low-regimes (i.e., bisecting KMeans), while others (i.e.,
proximity sampling) outperform later due to the initial use of uniform weights.

∗Corresponding author: akramzaytar@microsoft.com

1



ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

Figure 1: Silhouette scores of different clustering methods versus the expected number of samples
required to find 100 positives with an offline sampling scheme.

Figure 2: A log-scale comparison of labeling efficiency across sampling algorithms, highlighting
the differential performance in early and extended budget scenarios.
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