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ABSTRACT

As the world marked the midterm of the Sendai Framework for Disaster Risk Re-
duction 2015-2030, many countries are still struggling to monitor their climate
and disaster risk because of the expensive large-scale survey of the distribution
of exposure and physical vulnerability and, hence, are not on track in reducing
risks amidst the intensifying effects of climate change. We present an ongoing
effort in mapping this vital information using machine learning and time-series
remote sensing from publicly available Sentinel-1 SAR GRD and Sentinel-2 Har-
monized MSI. We introduce the development of “OpenSendaiBench” consisting
of 47 countries wherein most are least developed (LDCs), trained ResNet-50 deep
learning models, and demonstrated the region of Dhaka, Bangladesh by mapping
the distribution of its informal constructions. As a pioneering effort in auditing
global disaster risk over time, this paper aims to advance the area of large-scale
risk quantification in informing our collective long-term efforts in reducing cli-
mate and disaster risk.

1 INTRODUCTION

A global concern on the increasing frequency and intensity of climate disasters, the exacerbating
effects of climate change, and the higher rate of increase of exposed human settlements despite
a decrease in their vulnerability urged the international community to jointly develop the Sendai
Framework for Disaster Risk Reduction (SFDRR) 2015-2030 (UNISDR, 2015). However, in its
2023 midterm review, the United Nations reported that ”a lack of quality, interoperable, or accessi-
ble data” to quantify risk as a product of hazard, exposure, and vulnerability remains a challenge,
especially in many least developed countries (LDCs) where data-collection tools have become in-
equitably unaffordable (UNDRR, 2023). In particular, the expensive large-scale operation to stan-
dardize exposure datasets (e.g., human settlements) across countries with different and incomplete
physical vulnerability characteristics (e.g., building material and construction type) has remained
the primary bottleneck to providing a reliable understanding and audit of the evolving climate and
disaster risk landscape globally (So, 2023).
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Early efforts in developing large-scale exposure datasets were able to map the distribution of hu-
man settlements and their physical vulnerabilities (Gamba et al., 2012; Huyck et al., 2019), which
have been the basis of several global assessment reports (UNDRR, 2013; 2015; 2019; 2022). Un-
fortunately, these datasets contain limited generalizability and inherent biases that favor developed
countries. Specifically, LDCs have different and non-standard vulnerability characteristics because
of the ubiquity of informal settlements and different construction methodologies (Gunasekera et al.,
2015; Silva et al., 2022) and are increasingly outdated because of rapid urbanization (So, 2023).

Furthermore, the theme of most data-driven efforts (Esch et al., 2022; Sirko et al., 2021) focuses on
mere detection of buildings (i.e., a simple binary task to estimate the presence or absence of a build-
ing as a geometry feature or a land use class that is inferred from satellite imagery). Despite several
geospatial dasymetric efforts using digital elevation (DEM) and surface (DSM) models as a proxy to
understand the downscaled distribution of physical vulnerability characteristics (Geiß et al., 2023),
it remains difficult because of the high acquisition costs vis-à-vis high-resolution quality and the
limited temporal availability of DEMs and DSMs globally. Hence, many recent efforts attempted to
use indirect datasets such as the publicly available imagery from Sentinel-1 and Sentinel-2 satellites
because of its ability to capture the optical and backscattering signatures of the built environment
that could be related to pertinent characteristics such as building height, surface color, and roof
roughness (Müller et al., 2023; Frantz et al., 2021).

We present an ongoing effort to globally map not only the exposure but also its associated physical
vulnerability characteristics using time-series medium-resolution satellite imagery (i.e., 5-30 meter-
s/pixel). We introduce an initially developed benchmark dataset “OpenSendaiBench” (see Figure 1)
and present our findings from a multi-pixel and multi-resolution implementation using the ResNet-
50 deep convolutional neural network (CNN) architecture (He et al., 2016). Our primary purpose
is to bring into awareness this timely and relevant interdisciplinary problem to advance the area of
large-scale risk quantification in informing our collective SFDRR and post-2030 long-term efforts.

Figure 1: Geographical coverage of the “OpenSendaiBench” dataset with 47 countries.

2 THE “OPENSENDAIBENCH” DATASET

The global dataset is a 60-GB collection of 47 countries, wherein 45 are LDCs, and is available in
our public Zenodo repository (Dimasaka et al., 2024) with the following folder structure.

extent
[countryCode] [nth] of [totalTiles] [index].geojson

groundtruth
[countryCode] nbldg [vulnerabilityCode] [nth]*.tif

obsvariables
SENTINEL1-DUAL POL GRD HIGH RES

[countryCode] [nth] of [totalTiles] [index]
[year] VV.tif
[year] VH.tif

SENTINEL-2-MSI LVL2A
[countryCode] [nth] of [totalTiles] [index]

[year] RGB.tif
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2.1 NATIONAL CENSUS-DERIVED EXPOSURE DATA

We rasterized every country-wide point dataset of building counts from the METEOR project with
a defined physical vulnerability type (see A.1 for a complete list of typology) at a spatial resolution
of 15 arcseconds or approximately 500 meters at the equator (Huyck et al., 2019). We then imple-
mented a rigorous probability-based approach in extracting 100 square tiles for each country. We
consider the effect of relative areal extent differences of these countries for future work.

In sampling these 100 square tiles, we considered the number of physical vulnerability types that
are present in every pixel to ensure that every label including those unlabeled pixels is represented.
Specifically, we analyzed the empirical probability distribution of each present physical vulnerability
type and assigned a joint probability for each point on the map, assuming that the probability of
being in a particular type is independent of each other (e.g., probability of a point being an informal
settlement is not influenced by the probabilities of any other building types). We consider the effects
of other highly vulnerable types on the agglomeration of informal settlements for future work.

We used these resulting joint probability values as inputs to our importance sampling technique to
ensure a balanced representation of sampled pixels. Instead of individual sampling of pixel locations,
we extracted square tiles, which is an 8-pixel-by-8-pixel group of 64 sampled locations.

2.2 TIME-SERIES SATELLITE IMAGERY

With the previously extracted geographical extents, we obtained the following pre-processed time-
series satellite imagery via Google Earth Engine (Gorelick et al., 2017).

Sentinel-1 SAR GRD. At 10-m spatial resolution, we used the annual mean of the Ground Range
Detected (GRD) scenes that are acquired from the dual-polarization C-band Synthetic Aperture
Radar (SAR) instrument at 5.405GHz of Sentinel-1 satellite (Copernicus Sentinel data, 2024a). As
a result, covering the years from 2019 to 2023, we extracted nine annual mean of the two bands:
VV (vertical transmit, vertical receive) and VH (vertical transmit, horizontal receive) signals. To
avoid data incompleteness across large areas, we disregarded filtering by orbital number and satellite
direction. We also note that there are countries such as Angola, Comoros, Ethiopia, Kiribati, and
Tuvalu with either partially or fully complete VV and VH signals because the orbit of Sentinel-1
satellite does not cover these areas for some time or only a single VV signal is available (see A.2).

Sentinel-2 Harmonized MSI. With similar spatial resolution at 10 meters, we also extracted the
annual median of the atmospherically corrected surface reflectance signals represented by the red,
green, and blue (RGB) bands that are acquired from the MultiSpectral Instrument (MSI) of Sentinel-
2 satellite (Copernicus Sentinel data, 2024b). The aggregation by year also enables minimizing the
unnecessary noisy cloudy or shadowy signals using the available and corresponding Sentinel-2 cloud
probability dataset (Copernicus Sentinel data, 2024c). Unlike Sentinel-1 SAR GRD, the resulting
five annual median maps from 2019 to 2023 are all available for 47 countries.

3 PROBLEM DEFINITION: A MULTI-RESOLUTION MULTI-PIXEL FRAMING

Because of the differing spatial resolutions of ground truth labels and satellite imagery inputs, we
approach this as a multi-resolution multi-pixel problem. We hypothesize that the 50x finer resolution
of satellite imagery contains significant and detailed spatial patterns that could be informative to
the learning of our machine learning models. Hence, we performed the upscaling or aggregation
within the ResNet-50 architecture so that the resulting predictions have a similar dimensionality
as the ground truth labels. Despite the interesting simpler opportunity to investigate a single-pixel
approach, we also assume that a multi-pixel representation in the form of 8x8-array considers the
pertinent information from neighboring pixels.

Moreover, we frame the problem to have coarser resulting predictions wherein the ground truth la-
bels are not instead downscaled to match the resolution of satellite imagery because of the ethical
consideration where overly localized attribution or prediction may pose social harm and cause unde-
sirable impacts to the applied area of climate and disaster risk, particularly in formulating regional
policies in climate financing or insurance. In other words, we note the lower-resolution approach
is suitable for not only efficiently conducting large-scale risk quantification but also preserving the
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privacy of confidential household information as to what kind of building material, physical vul-
nerability, relative economic valuation, or any other indirect variables that could be inferred from a
high-resolution study at 10 meters or finer.

Thus, we define our problem that, in every square tile Ti
year for i ∈ [1, 100], there is a pair of

(xsignalBand
locationIndexX , yvulnerabilityType

locationIndexY ) wherein the locationIndexX and locationIndexY have ge-
ographical alignment mapping relationship. For x, the signalBand is any combination from the set
{red, green, blue, V V, V H}. For y, the vulnerabilityType is any combination of physical vul-
nerability types common to a subset of countries. For example, the “informal constructions” type is
present in 33 out of 47 countries.

As y values could take extremely high and low values (e.g., a highly dense area with hundreds
of buildings), instead of y as a direct input to our CNN model, we computed the Pnonexceedance

from a lognormal fit of building counts for a particular vulnerabilityType, as a random variable
(i.e., y ∼ lnN (µ, σ2) ). This transformed representation enables the use of probability values
limited to the range [0, 1], which effectively provides a regional measure of dispersion as a decision
variable of interest in the practice of performance-based engineering involving earthquakes and other
natural hazards (Heresi & Miranda, 2023). The Pnonexceedance is interpreted as the probability that
a building count of a particular vulnerability type will be less than the predicted building count,
which is computed as:

Pnonexceedance = P
[
Y vulnerabilityType
locationIndexY ≤ y

]
= Φ(

ln(y)

σ
) =

1

2

[
1 + erf

(
ln y − µ√

2σ

)]
(1)

4 BASELINE EXPERIMENT: A RESNET-50 CNN IMPLEMENTATION

Modifying the ResNet-50 CNN architecture for a custom number of input signals, we trained the
models with Adam optimizer, an initial learning rate of 0.0001, a batch size of 64, and a training-
validation-testing split ratio of 60-20-20. As shown in Table 1, the numerical findings revealed
that the model S1 trained with VV and VH signals resulted in the smallest MSE and MAE scores,
implying that it can accurately estimate Pnonexceedance with an average absolute error of around
±1%. In addition, the model S1 improved the MSE and MAE scores of the model S2 by 25%
(MSE) and 22% (MAE) and of the model S1+S2 by 4.1% (MSE) and 10% (MAE), respectively.
This implies that the backscattering SAR signals, which primarily capture the surface roughness
and texture of the ground, were more effective in learning the features than the optical RGB signals.

Table 1: Baseline test set score results for the ’informal constructions’ type.

Model (Input Bands) MSE
[
10−3

]
MAE

[
10−2

]
S1 (VV, VH) 4.93 1.07
S2 (R, G, B) 6.56 1.38

S1+S2 (VV, VH, R, G, B) 5.14 1.19

However, we note that additional preprocessing investigation may be needed to meaningfully use
the optical RGB signals because these capture the optical signatures such as the roof color of the
building. Existing building datasets and elevation maps as a prior belief may also be able to prune
and enhance the model capability because other land features such as vegetation that rapidly changes
through time may have affected the learned model parameters.

Furthermore, Figure 2 shows the predicted distribution of exposure and physical vulnerability of
the city of Dhaka, which has many informal constructions, for the year 2019. We observed that,
despite the underestimation of the large values of building count, the models can distinguish the areas
with relatively high and low counts, which indicates that the probabilistic transformation should be
chosen reliably to represent regional building counts with consideration of extreme values.

5 CONCLUSION AND FUTURE WORK

As we are faced with global uncertainty about whether our local and collective efforts in disaster risk
reduction have been progressing, we presented an ongoing machine learning effort that addresses
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Figure 2: Predicted 2019 distribution of “informal constructions” of Dhaka, Bangladesh.

this pressing problem to quantify large-scale risk by mapping the exposure and physical vulnera-
bility characteristics using remote sensing. As a pioneering effort, we introduced the development
of “OpenSendaiBench”, a global benchmark dataset that enables the community of both machine
learning specialists and disaster risk modelers to contribute and build methodologies. We demon-
strated the technical feasibility of this effort using a simple deep-learning model with promising
baseline test score results and highlighted the story of informal constructions in Dhaka, Bangladesh.

For future work, we aim to expand the global catalog with Landsat and other Sentinel-2 imagery
bands, use elevation maps (DEM/DSM) as prior belief, and incorporate spatial urban morphology
growth models to empirically describe the regional dynamics. In partnership with key stakeholders,
we plan to localize this effort for some selected cities in the Philippines and Bangladesh. Towards the
end, we will implement the probabilistic risk analysis and derive the regional risk metrics, depending
on the dominant natural hazards in a given country.
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A APPENDIX

A.1 LIST OF BUILDING TYPES

Table A1: Description of physical vulnerability types and the number of countries with these types.

Symbol Countries Description
A 32 Adobe blocks (unbaked sundried mud block) walls
C 7 Reinforced concrete

C3L 43 Nonductile reinforced concrete frame with masonry infill walls low-rise
C3M 19 Nonductile reinforced concrete frame with masonry infill walls mid-rise
C3H 6 Nonductile reinforced concrete frame with masonry infill walls high-rise
DS 1 Rectangular cut-stone masonry block
INF 32 Informal constructions.
M 23 Mud walls
RE 3 Rammed Earth/Pneumatically impacted stabilized earth
RM 2 Reinforced masonry
RS 21 Rubble stone (field stone) masonry
RS1 3 Local field stones dry stacked (no mortar) with timber floors, earth, or metal roof.
RS2 1 Local field stones with mud mortar.
RS3 3 Local field stones with lime mortar.

S 9 Steel
S1L 1 Steel moment frame low-rise
S1M 1 Steel moment frame mid-rise
S3 8 Steel light frame
S5 1 Steel frame with unreinforced masonry infill walls

UCB 39 Concrete block unreinforced masonry with lime or cement mortar
UFB 33 Unreinforced fired brick masonry

UFB1 1 Unreinforced brick masonry in mud mortar without timber posts
W 28 Wood

W1 2 Wood stud-wall frame with plywood/gypsum board sheathing.
W2 1 Wood frame, heavy members (with area 5000 sq. ft.)
W3 5 Wood light unbraced post and beam frame.
W5 31 Wattle and Daub (Walls with bamboo/light timber log/reed mesh and post).
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A.2 COMPLETENESS OF SATELLITE IMAGERY

Table A2: Availability of Sentinel-1 GRD VV and VH signals for each country. As a reference, 0,
1, 2, and 3 mean ’none’, ’available’, ’uncovered’, and ’only VV signal is available’, respectively.

Country 2016 2017 2018 2019 2020 2021 2022 2023
AFG 1 1 1 1 1 1 1 1
AGO 1 1 1 1 1 1 2 2
BDI 1 1 1 1 1 1 1 1
BEN 1 1 1 1 1 1 1 1
BFA 1 1 1 1 1 1 1 1
BGD 1 1 1 1 1 1 1 1
BTN 1 1 1 1 1 1 1 1
CAF 1 1 1 1 1 1 1 1
COD 0 1 1 1 1 1 1 1
COM 0 1 1 1 1 1 0 0
DJI 1 1 1 1 1 1 1 1
ERI 1 1 1 1 1 1 1 1
ETH 1 1 1 1 1 1 1 1
GIN 1 1 1 1 1 1 1 1
GMB 1 1 1 1 1 1 1 1
GNB 1 1 1 1 1 1 1 1
HTI 1 1 1 1 1 1 1 1
KHM 1 1 1 1 1 1 1 1
KIR 3 3 3 3 3 3 3 3
LAO 1 1 1 1 1 1 1 1
LBR 1 1 1 1 1 1 1 1
LSO 1 1 1 1 1 1 1 1
MDG 1 1 1 1 1 1 1 1
MLI 1 1 1 1 1 1 1 1
MMR 1 1 1 1 1 1 1 1
MOZ 1 1 1 1 1 1 1 1
MRT 1 1 1 1 1 1 1 1
MWI 1 1 1 1 1 1 1 1
NER 1 1 1 1 1 1 1 1
NPL 1 1 1 1 1 1 1 1
RWA 1 1 1 1 1 1 1 1
SDN 1 1 1 1 1 1 1 1
SEN 1 1 1 1 1 1 1 1
SLB 1 1 1 1 1 1 0 0
SLE 1 1 1 1 1 1 1 1
SOM 1 1 1 1 1 1 1 1
SSD 1 1 1 1 1 1 1 1
STP 1 1 1 1 1 1 1 1
TCD 1 1 1 1 1 1 1 1
TGO 1 1 1 1 1 1 1 1
TLS 1 1 1 1 1 1 1 1
TUV 3 3 3 3 3 3 3 3
TZA 1 1 1 1 1 1 1 1
UGA 1 1 1 1 1 1 1 1
VUT 1 1 1 1 1 1 1 1
YEM 1 1 1 1 1 1 1 1
ZMB 1 1 1 1 1 1 1 1
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