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ABSTRACT

The assessment of above ground biomass density (ABGD) is essential for under-
standing the global carbon cycle and its impact on environmental dynamics. Despite
advances in remote sensing technologies, the accurate estimation of biomass at
fine spatial resolutions still presents challenges due to data gaps. Here, we pro-
pose a deep learning approach using Convolutional Neural Networks (CNNs) for
global AGBD estimation at a 10-meter ground sampling distance. This approach
is informed by near-real-time Sentinel-2 multispectral imagery and sparse GEDI
LiDAR data. Our method, which adapts a CNN architecture initially created for
canopy height mapping, is systematically assessed through various experiments
considering geolocation, topographical, and climate data inputs. The best perform-
ing model achieves a mean absolute error of 35.9 Mg/ha, a root mean square error
of 81.1 Mg/ha and a mean absolute percentage error of 79.6, showcasing competi-
tive performance across continents against a global test set of over 300,000 samples.
Notably, the inclusion of elevation information and geo-coordinates considerably
improves AGBD predictions compared to the base model. The proposed method
operates effectively without the need for extensive ground survey data, offering
the potential for frequent updates to biomass density maps thanks to the revisit
capability of the Sentinel-2 satellites.

1 INTRODUCTION

Forest biomass plays a crucial role in sustainable forest management, recognized by the United
Nations as a vital component in the global carbon cycle Zhang et al. (2019). Accounting for over 30%
of the terrestrial carbon pool, aboveground biomass (”biomass”) is shaped by various environmental
factors, and is associated with land cover conversion and greenhouse gas emissions Herold et al.
(2019). Biomass serves as the foundation for essential natural resources such as food, water, energy,
and wood, and contributes to hazard mitigation and the development of sustainable conservation
strategies for climate and biodiversity targets Mo et al. (2023). In recent years, satellite remote
sensing has emerged as a cost-effective and efficient method for large-scale environmental monitoring,
providing valuable insights into land cover dynamics Food & of the United Nations (2020). Multiple
studies have demonstrated the general feasibility of inferring biomass using multispectral data,
although with notable instances of underestimation and overestimation at very high or very low
biomass levels Gasparri et al. (2010), Li et al. (2020). While the launch of the GEDI LiDAR sensor
represents a significant advancement in biomass measurement capabilities Duncanson et al. (2022),
achieving continuous and seamless measurements remains challenging due to significant spatial and
temporal gaps. Building upon existing research (e.g. Shendryk (2022), Schwartz et al. (2023), Lang
et al. (2023)), this study aims to leverage Convolutional Neural Networks to estimate global biomass
distribution using near-real-time multispectral Sentinel-2 imagery and sparse GEDI Level 4 AGBD
data. Specifically, we evaluate an architecture proposed by Lang et al. (2023) for canopy height
mapping, adapting it for above ground biomass estimation.
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Dataset Description Resolution
GEDI L4 AGBD LiDAR-based Biomass Density 25m footprints
Sentinel-2 Multispectral Imagery 10m
ESA WorldCover Land Cover Classification 10m
WTE Ecosystem Distribution 250m
CopDEM Digital Elevation Model 30m

Table 1: Summary of datasets used in this study. GEDI L4A coverage is constrained to ±51.6 degrees
latitude, all other datasets have global coverage.

Dataset Characteristics Training and Validation Set Test Set
Number of Samples 2,110,311 332,544
Temporal Coverage 2019-2020 2021
Location (Coverage) ±51.6 deg latitude (GEDI coverage)

Table 2: Quantitative description of the dataset specifications used for this study.

2 DATASETS

We curated a comprehensive dataset comprised of over 2 million samples, integrating multispectral
Sentinel-2 Level-2A imagery ESA (2021) using 11 bands (namely B02, B03, B04, B05, B06,
B07, B08, B8a, B09, B11, B12) and GEDI L4A-derived AGBD labels Dubayah et al. (2022). In
different experiments, we combined the multispectral data with elevation data from ESA CopDEM
ESA (2019), land cover information from ESA WorldCover Zanaga et al. (2022) and USGS World
Terrestrial Ecosystems (WTE) data Sayre et al. (2020) to train several CNN models with the proposed
architecture. The spatial resolution of the data was set at 10 x10 m. Data were split allocating 80%
for training and 20% for validation purposes, with an additional independent test set comprising
over 300,000 samples. Please see Figure 4 for an example of a training data sample. Figure 5
illustrates the spatial distribution of ecosystems across training samples, covering a broad variety
of ecosystems. Pre-prossessing procedures were conducted on individual datasets to compose a
single HDF5 file containing all data samples. After spatio-temporal matching of Sentinel-2 L2A and
GEDI L4 data, a strict quality check was performed on the GEDI, CopDEM, and Sentinel-2 data to
ensure that only high-quality, cloud-free observations with a terrain slope below 15 degrees were
used for analysis Shendryk (2022). The coordinate information was incorporated as the sine and
cosine of the geo-coordinates. Table 1 presents a summarized description of each dataset, along with
its characteristic specifications.

3 METHODOLOGY

A CNN architecture featuring residual blocks and depth-wise separable convolutions was used to
capture diverse spatial information from multiple data sources. An end-to-end deep learning pipeline
was established, encompassing data preprocessing, model training, and validation processes as
illustrated in Figure 1. The base CNN architecture is built based on ResNet (Residual Network), a
deep neural network which utilizes residual blocks, each containing several convolutional layers,
batch normalization layers, and activation functions, to pass data inputs He et al. (2016). This
architecture was originally designed to process data derived from Sentinel-2 level 2A bands to
predict canopy height (Lang et al., 2023). It comprises distinct components, including an entry block
and 8 identical separable convolution blocks. The original model’s architecture was modified by
incorporating skip connections, which enable the bypassing of certain blocks and their subsequent
merging with the output activation map. The neural network is trained with a batch size of 32 and
weight decay of 0.001, using the Adam optimizer. Several training strategies are evaluated, including
the use of geolocation information, vegetation indices, land cover information, climate data, and
Monte Carlo dropout.
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Figure 1: Methodology overview for the base model

Bin [start, end] 0, 50 50, 100 100, 150 150, 200 200, 250 250, 300
Number of Samples 207038 57944 27606 17276 10126 5342

Table 3: Number of test samples per bin in Figure 3

3.1 EVALUATION METRICS

The Mean Absolute Error (MAE) is the predominant metric we use to assess our model’s accuracy
in estimating Aboveground Biomass Density (AGBD), reported in megagrams per hectare (Mg/ha).
The MAE captures the average difference between predicted values and ground truth, providing a
direct measure of prediction precision.
Root Mean Square Error (RMSE) can give a more comprehensive evaluation of model accuracy.
This is because RMSE, unlike MAE, amplifies and severely penalizes larger prediction errors.
Therefore, it’s particularly useful for datasets with extreme values or outliers. Using both metrics thus
offers a more robust assessment of our model’s performance in predicting Aboveground Biomass
Density (AGBD).
Mean Absolute Percentage Error (MAPE) measures the average magnitude of errors in predictions,
expressed as a percentage of the actual values, providing an intuitive understanding of the model
performance across various data points.

4 RESULTS AND DISCUSSION

The results of the study indicate that CNNs exhibit a robust potential for estimating the global
aboveground biomass density (AGBD) using a combination of Sentinel-2 data and auxiliary data as
input. Table 4 presents a quantitative summary of the model evaluation metrics. The baseline model,
which relied solely on Sentinel-2 multispectral bands, marked the starting benchmark with an average
RMSE of 82.4 Mg/ha, an MAE of 37.7 Mg/ha and a MAPE of 86.6 % across the entire test dataset.
Notable enhancements in model performance were observed upon integrating ancillary information
such as elevation and geographical coordinates, resulting in an RMSE of 81.1 Mg/ha, a MAE of 35.9
Mg/ha and a MAPE of 79.6 % as illustrated in table 4. The introduction of additional datasets such
as ESA WorldCover and World Terrestrial Ecosystems had mixed effects on the model performance.
The used land cover information is dated back to 2021. This could potentially skew the results by
unintentionally overfitting to outdated land cover information. While certain additional input features
resulted in improvements over the baseline, particularly over higher AGBD targets, others negatively
affected the model performance. Interestingly, the model using land cover information as additional
input feature achieves the lowest MAPE for very low AGBD values. As all models show the highest
absolute relative errors for low AGBD values, which are often related to arid regions, providing
information about the land cover seems to reduce the tendency of the model to overestimate AGBD
in these conditions. The CNN model, despite performing well under a broad spectrum of forest types
and climates, confirmed the persistent challenge in estimating very low and very high AGBD values,
particularly within dense tropical and sub-tropical forests—a limitation predominantly associated
with the saturation of spectral signals in optical remote sensing (see Figure 2). The achieved results
are well aligned with Shendryk (2022), who reported an RMSE of 59 to 86 Mg/ha for Australia and
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the continental Unites States using a LightGBM algorithm in combination with Sentinel-2 data and
land cover information.

Exp Model Inputs RMSE [Mg/ha] MAE [Mg/ha] MAPE [%]
1 Sentinel-2 only 82.4 37.7 86.6
2 Sentinel-2, DEM, geo-coordinates 81.1 35.9 79.6
3 Sentinel-2, ESA WorldCover 82.7 36.1 71.5
4 Sentinel-2, WTE 83.2 37.95 87.4
5 Sentinel-2, Vegetation Indices 83.59 37.05 83.7
6 Sentinel-2, Monte Carlo Dropout 83.6 37.1 76.2

Table 4: Quantitative evaluation of CNN models for global above ground biomass density estimation.

Figure 2: Global distribution of MAE in AGBD prediction using the model from experiment 2

Figure 3: Binned absolute and relative error of AGBD predictions from each experiment. All models
utilize Sentinel-2 bands. Base denotes Sentinel-2 only, XYZ denotes geolocations + DEM, LC
denotes ESA WorldCover, VIs denotes NDVI (Normalized difference vegetation index), NDWI
(Normalized Difference Water Index) and LAI (Leaf Area Index), MC denotes Monte Carlo Dropout.
The number of samples in each bin is shown in table 3

.
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5 SUMMARY AND OUTLOOK

The proposed method showcases the feasibility of estimating aboveground biomass density globally
at a 10-meter resolution and provides an efficient alternative to the collection of on-site survey
data. The global CNN regression model, utilizing Sentinel-2 multispectral bands, elevation, and
geo-coordinates, demonstrates acceptable performance that is in line with results reported by studies
focusing on specific regions (e.g. Shendryk (2022)). This facilitates frequent updates in biomass
mapping using Sentinel-2 imagery, enabling the tracking of natural and human-induced changes such
as land use conversion and forest fires. A limitation of the current methodology is its tendency to
underestimate very high AGBD, particularly in very tall and dense forests common in tropical and
subtropical climates, as well as very low AGBD, as often seen in arid and mountainous regions. To
enhance generalization, local calibration and spatial aggregation can be employed to better align the
model with local features. Another strategy involves using CNN model ensembles, at the expense
of increased computational costs, to mitigate model bias, quantify model uncertainty and improve
overall performance. Future work is warranted to refine the CNN architecture, balance the training
dataset, and explore methodologies like sensor data fusion, spatial aggregation, and multi-temporal
analysis to counteract these pitfalls and enhance model reliability.
The outcome of this study provides a basis for various downstream applications. In forest management,
this data-driven approach allows for sustainable harvesting directives and assessing the impacts of
disturbances such as wildfires. For climate change policy and research, these accurate measures of
ABGD enable precise computation of carbon emissions and stocks, representing significant metrics
in global efforts to curb climate change and meeting biodiversity goals.
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S. Jouaber, S. Liu, M. Brandt, and I. Fayad. FORMS: Forest multiple source height, wood volume,
and biomass maps in france at 10 to 30 m resolution based on sentinel-1, sentinel-2, and global
ecosystem dynamics investigation (gedi) data with a deep learning approach. Earth Syst. Sci. Data,
15:4927–4945, 2023. doi: 10.5194/essd-15-4927-2023.

Yuri Shendryk. Fusing GEDI with earth observation data for large area aboveground biomass
mapping. International Journal of Applied Earth Observation and Geoinformation, 115:103108,
December 2022. ISSN 1569-8432. doi: 10.1016/j.jag.2022.103108. URL https://www.
sciencedirect.com/science/article/pii/S1569843222002965.

Daniele Zanaga, Ruben Van De Kerchove, Dirk Daems, Wanda De Keersmaecker, Carsten Brock-
mann, Grit Kirches, Jan Wevers, Oliver Cartus, Maurizio Santoro, Steffen Fritz, et al. Esa
worldcover 10 m 2021 v200. 2022.

Yuzhen Zhang, Shunlin Liang, and Lu Yang. A review of regional and global gridded forest biomass
datasets. Remote Sensing, 11(23):2744, 2019.

6

https://doi.org/10.5270/ESA-c5d3d65
https://doi.org/10.5270/ESA-c5d3d65
https://www.sciencedirect.com/science/article/pii/S1569843222002965
https://www.sciencedirect.com/science/article/pii/S1569843222002965


ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

A APPENDIX

Figure 4: Example of training images (32 x 32 pixels) (left: Sentinel-2 true colour composite; middle:
normalized elevation in meters from COP-DEM; right: ESA WorldCover land cover class)

Figure 5: Spatial distribution of ecosystems over training samples
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