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ABSTRACT

Granular and repeated measurements of material wealth are essential for under-
standing and improving economic livelihoods, but detailed survey data is scarce,
especially in Africa — the continent most affected by poverty. Recent machine
learning approaches successfully leverage non-traditional data sources such as
satellite data to predict material wealth across locations but not its variation over
time. This work systematically investigates the potential of publicly available
satellite and OpenStreetMap data to predict levels and fluctuations in annual con-
sumption expenditure and asset wealth at the village level. Models trained on
panel data from five African countries between 2007 and 2021 explain up to 52%
of spatial variation but struggle to explain temporal variation (R2<0.04). This
has important implications for retrospective policy evaluation, highlighting that
in many contexts, non-traditional data sources cannot replace traditional survey
data. Considering more nuanced input data constitutes a promising avenue for
future research.

1 INTRODUCTION

In the global fight against poverty, it is vital to understand which policies and anti-poverty programs
are most effective in raising living standards (Annan, 2018; Imbens, 2010). Impact evaluation of
anti-poverty programs commonly relies on extensive and detailed household survey data. Ideally,
this should be spatially and temporally detailed panel/longitudinal data as it will permit policy eval-
uations by allowing the establishment of accurate counterfactuals (Abadie & Cattaneo, 2018). How-
ever, detailed survey data is scarce — its collection is time and resource-intensive (Serajuddin et al.,
2015).

In light of this evident “data-deprivation” (Serajuddin et al., 2015), economists and social scientists
seek non-traditional data sources to approximate annual panel data on key economic variables at high
regional resolution (Chen & Nordhaus, 2011; Henderson et al., 2012). For valid proxies of annual
material wealth, non-traditional data sources must accurately differentiate wealth between locations
(spatial prediction) and within locations over time (temporal prediction). Recent works highlight the
use of high to medium resolution daytime satellite imagery (<1 m/pixel to 30 m/pixel) and mobile
phone metadata to delineate wealth disparities among villages or neighbourhoods (Blumenstock
et al., 2015; Jean et al., 2016; Yeh et al., 2020; Chi et al., 2022). However, the accuracy of day-and-
nighttime satellite images in predicting wealth dynamics within locations over time is still under
scrutiny (Yeh et al., 2020; Wölk et al., 2023). It remains to be understood how this affects annual
material wealth prediction, which is much needed for policy evaluation.

This paper systematically studies whether publicly available non-traditional data allow for predict-
ing annual material wealth at the village or neighbourhood level (spatial units of 6.7X6.7km, called
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clusters in this context).1 In particular, we focus on non-traditional data sources that are available for
more than two decades, including daytime satellite images (30 m/pixel), nightlights, vegetation and
water indices and precipitation. Furthermore, we utilize land cover, settlement area and volunteered
geographic information from OpenStreetMap (OSM). Using repeated observations from household
panel survey data across five African countries (Table 1), we make three main contributions: (1)
we introduce a prediction framework that combines the output of a spatial and a temporal model
to obtain cluster-and year-specific predictions of material wealth; (2) for temporal prediction, we
explore the use of time series information from vegetation and water indices and precipitation be-
yond day-and-nighttime satellite image features; and (3) we document that relatively high accuracy
in annual wealth predictions (R2=0.49) reflects the model’s capability to predict material wealth
across space (R2=0.52), while at the same time being unable to predict wealth dynamics over time
(R2<0.04). Crucially, our findings underscore that the reliability of annual wealth approximations
from non-traditional data sources is questionable, especially when not relying on proprietary data
(e.g., high-resolution satellite images, mobile phone or social media usage data). This limits the
scope of retrospective policy evaluations that include years before 2015, for which higher-resolution
satellite imagery is not publicly available.

2 DATA AND METHODS

Survey Data. We obtain a panel on ground truth wealth labels from the World Bank’s Living
Standards Measurement Study. The panel data encompasses surveys conducted between 2007 and
2021 in five African countries: Ethiopia, Malawi, Nigeria, Tanzania, and Uganda. Depending on
survey specifics, households are revisited between one and six times. Households are grouped into
clusters, the smallest geographical areas at which geolocations are available. We aggregate the
wealth indicators to the cluster level by taking the average over all households within each cluster.
If households retire from the survey, we remove them entirely from our sample. This prevents
household composition within each cluster from driving temporal variation in the data. However,
the resulting attrition introduces bias to the cluster estimates, because at baseline they are on average
wealthier than non-attrition households by about 0.86$ per capita per day. Our data includes 17,445
households across 2,128 clusters and 6,401 cluster-year observations (Table 1).2

We use daily per capita consumption expenditures, expressed in 2017 international dollars, as the
primary indicator of material wealth. Additionally, we derive a relative asset wealth index using
PCA on the pooled sample including all clusters over all years. The asset index ranks households
based on their asset ownership relative to one another (Filmer & Pritchett, 2001). In line with other
studies (Jean et al., 2016; Yeh et al., 2020), we find a moderate correlation between the asset index
and log consumption expenditures at the household (r=0.53) and at the cluster level (r=0.53).

Consumption Asset wealth
—————————— ——————————
Mean σB σW σO Mean σB σW σO N Clusters Years

Ethiopia 2.47 2.10 0.96 1.48 -0.74 1.34 0.19 0.82 1187 431 11, 13, 15
Malawi 4.13 5.37 1.13 3.88 -0.31 0.86 0.13 0.62 366 183 10, 13
Nigeria 4.61 4.49 2.33 3.27 0.37 1.31 0.22 0.80 1167 419 10, 12, 15, 18
Tanzania 4.42 5.38 1.81 3.68 0.56 1.68 0.20 1.07 1951 781 08, 10, 12, 14, 19, 20
Uganda 4.13 7.47 1.87 3.60 -0.30 1.57 0.25 0.71 1730 314 09, 10, 11, 13, 15, 18, 19
Pooled 4.00 5.27 1.79 3.38 0.00 1.71 0.22 1.00 6401 2128 08–20 (not 16, 17)

Table 1: Summary statistics of ground truth labels. σB , σW , σO indicate the standard deviation between
clusters, within clusters, and overall. N is the total number of cluster-year observations in respective countries.
Years indicates the years in which data was collected. Each cluster is visited at least twice. Consumption
expenditure is measured in 2017 international dollars. Asset wealth are the first principal component scores
over a set of household assets.

1In line with Yeh et al. (2020), we define a cluster as a grid cell measuring 6,720m in width and height.
2Disclosed GPS coordinates of the clusters’ locations are randomly displaced by up to 2 km in urban areas

and up to 5 km in rural areas. We recenter the geolocations to the closest populated place on OSM. We
consider the following populated places: villages, neighbourhoods, quarters, city blocks, suburbs, towns, cities,
residential areas, buildings, isolated dwellings, and hamlets.
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Dynamic Features. Dynamic features include day-and-nighttime satellite images, NDVI, NDWI
and precipitation and are available annually. We obtain median annual RGB satellite images from
all available cloud-free Landsat 5, 7, and 8 images, mean annual NDVI and NDWI from cloud-
free Modis satellite images, harmonised nighttime satellite images (nightlights) from Chen et al.
(2021), and precipitation data from Funk et al. (2015). Similar to Chi et al. (2022), we extract vector
representations from RGB daytime satellite images using a ResNet18 pre-trained on ImageNet. We
do not finetune the network. We remove the network’s last layer to obtain a 512-dimensional vector
representation of each satellite image and apply PCA, reducing the dimensionality of the image
representations to 25. For NDVI, NDWI, and nightlights, we extract the cluster grid cell means and
standard deviations. We sum precipitation data over the year at cluster centroids.

Static Features. Static features include land cover from 2020 (Zanaga et al., 2021), human set-
tlement areas from 2019 (Marconcini et al., 2021), and OSM features as of March 2023. Static
features do not vary over time. For land cover, we calculate the area covered by different classes
such as cropland or built-up areas. From OSM, we compute the road network length and the number
of amenities within clusters.3 We approximate cluster remoteness by calculating the distance from
clusters to the nearest paved/primary road and to the amenities. A caveat of OSM data is its incom-
pleteness (Herfort et al., 2023), potentially introducing noise into the analysis. However, excluding
OSM data reduced model performance.

Methods. The ideal model explains variation in material wealth between clusters (spatial variation)
and within clusters over time (temporal variation). To achieve this, we split the model into a spatial
and a temporal component. The combined model aggregates the output of both model components to
obtain annual material wealth predictions. This approach has two advantages over directly predicting
annual material wealth. First, the spatial and temporal models are specialised to their tasks. Second,
this allows for explicitly assessing whether the combined predictions reflect spatial and temporal
variation in material wealth.

We disentangle the material wealth indicator into a between and within component. w̄c — the
between component — is the mean material wealth over all time periods t of cluster c. w̃ct =
wct − w̄c — the within component — denotes the annual deviation of clusters’ material wealth
from its mean over time. The target variable for the spatial model is w̄c. The target variable for
the temporal model is w̃ct. The spatial model takes static features and dynamic features averaged
over time as input. The temporal model takes exclusively dynamic features as inputs. Consistent
with the target variable of the temporal model, we demean all input features for the temporal model.
For both models, our main algorithm is a Random Forests (RF) algorithm.4 Additionally, as a
more flexible model, we estimate a gradient boosted regression tree (GBM).5 In order to allow for a
better comparison to the literature, we also train a ResNet18 model on multi-spectral (MS) day-time
satellite images in an end-to-end fashion as suggested by Yeh et al. (2020).6 We train the ResNet18
for day-time satellite images only, because Yeh et al. (2020) find that including nightlights reduces
temporal model performance.

3Amenities include bars, cafes, markets, schools, universities, libraries, fuel stations, pharmacies, hospitals,
and clinics.

4We set the maximum number of predictors at each split to the square root of the total number of predictors,
the number of estimators to 3000, and the minimum number of observations in each leaf to five for both models.

5We tune GBM hyperparameters using nested 5-fold cross-validation, performing a grid search over the
maximum tree depth (2, 4, 6, 8, 10) and the number of estimators (250, 500, 750) to maximise R2.

6We closely follow the training procedure outlined by Yeh et al. (2020): for spatial prediction, we use a
ResNet18, pre-trained on ImageNet. We modify the first convolutional layer to accommodate MS satellite
images, adopting the same-scaled weight initialisation scheme (Yeh et al., 2020). For temporal prediction, we
train a ResNet18 from scratch, initialising weights randomly using Kaiming weight initialisation (He et al.,
2015). We stack the image of a given year and the respective mean over time on top of each other, creating an
image of size 224×224×12 for a cluster-year observation. The ResNet18 models are trained with the Adam
optimiser (Kingma & Ba, 2014) and a mean squared-error loss function in batches of 64 images. We perform
a grid search over the learning rate (1e-2, 1e-3, 1e-4) and L2 weight regularisation (1e-2, 1e-3). The learning
rate is decayed by a factor of 0.96 after every epoch. We randomly flip images horizontally and vertically with
a probability of 50%. We train models for 150 epochs and use the model with the highest R2 on the validation
set for model comparison. We tune hyperparameters on a spatially and temporally stratified 15% validation
sample within the training sample of each CV-iteration.
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Figure 1: Temporal, spatial and overall performance. Panel A: the model consistently explains a relatively
high share of the variation (R2) between clusters (red) in all countries, but fails to explain temporal variation
(yellow) in consumption expenditure. Panel B: the model explains slightly higher shares of spatial and temporal
variation in asset wealth as compared to consumption expenditure. Panel C: reducing noise in consumption
expenditure by removing clusters with few households from the sample does not improve model performance
substantially, but leads to a sharp deterioration in model performance after the sample is severely reduced.

We use a spatially and temporally stratified version of 5-fold cross-validation (CV) to estimate out-
of-sample performance, addressing temporal and spatial autocorrelation (Rolf, 2023; Chi et al.,
2022). In every iteration, we ensure that spatially overlapping clusters or repeated cluster obser-
vations belong only to the training or the test fold. We use the coefficient of determination (R2) to
quantify model performance.

3 RESULTS

Consistent with past work (Jean et al., 2016; Yeh et al., 2020; Chi et al., 2022; Engstrom et al., 2022),
we find that the spatial model explains a relatively high share of the variation in consumption expen-
diture (R2=0.46) and asset wealth (R2=0.52). However, we find that the temporal model explains
virtually none of the temporal variation in consumption expenditure (R2<0.01) and only marginal
variation in asset wealth (R2<0.04). Compared to RF, the more complex GBM icreases prediction
accuracy for the spatial model, not for the temporal model. The ResNet18 yields significantly lower
performance for all metrics, most likely because of comparatively few samples for a deep learning
algorithm (Table 2). During hyperparameter tuning of the ResNet18 model and the GBM, we find
that as soon as training performance of the temporal model increases, the validation performance
deteriorates, indicating that for temporal prediction the models pick up noise rather than signal in
the features.

Consumption Asset Wealth
—————————————————– —————————————————–
(A) Between (B) Within (C) Overall (D) Between (E) Within (F) Overall

RF 0.456(0.012) 0.009(0.002) 0.379(0.009) 0.495(0.014) 0.035(0.002) 0.481(0.011)
GBM 0.457(0.015) -0.009(0.005) 0.378(0.013) 0.521(0.014) 0.022(0.005) 0.494(0.010)
ResNet18 0.329 -0.006 0.189 0.455 0.007 0.359
RF Dir - - 0.381(0.010) - - 0.491(0.009)
GBM Dir - - 0.378(0.012) - - 0.489(0.006)

N 2128 6401 6401 2128 6401 6401

Table 2: Model performance for different algorithms. Columns present R2 values for different algorithms.
RF: Random Forests, GBM: Gradient Boosted Regression Tree. ResNet18 is trained on MS satellite images
only. Dir indicates that the algorithm is trained to predict annual material wealth levels directly. Reported R2

values are based on 5-fold spatial CV. Models are trained and evaluated on the same data splits. Performance
metrics are averaged over 50 folds (10 runs, 5 folds each)—standard errors in parentheses. For ResNet18,
spatial CV is not repeated to limit computations.
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For asset wealth, we achieve slightly higher performance when training and evaluating the temporal
model on individual countries (R2=0.04–0.11). We also find slight heterogeneity in temporal pre-
diction accuracy with respect to countries for consumption expenditures. The combined prediction
accuracy reflects the model’s capability to predict material wealth across space, not over time. Thus,
any temporal variation in predicted annual material wealth levels is likely to be random (Panels A
and B in Figure 1).

Reducing noise in the ground truth labels by excluding clusters with few households does not in-
crease model performance. Especially for the temporal model, small changes in the wealth indica-
tors over time might be obscured by noise in survey measurements (Yeh et al., 2020). We observe
an increase in within R2, alongside a substantial decrease in between and overall R2 only after ex-
cluding clusters with less than eight households from the data (Panel C in Figure 1). However,
we attribute these changes in performance to a significant shift in the sample composition, almost
entirely removing clusters from Tanzania and Uganda.

Restricting the sample to specific time periods with higher image quality, separating rural and urban
clusters, or requiring larger time differences between cluster-year observations does not improve
predictions of the temporal model for either wealth indicator. The quality of day-and-nighttime
images increases after 2013, when Landsat 8 daytime satellite images and VIIRS-DNB nighttime
satellite images become available. However, restricting the sample to the respective time period does
not affect temporal model performance (column B in Table 3). In urban areas, the temporal model
performs worse as compared to rural areas (columns C, D in Table 3). Finally, annual changes in
material wealth might be too small or too noisy for the temporal model to capture them. Never-
theless, ensuring at least three years between observations of the clusters does not increase model
performance significantly vis-a-vis the full sample (column E in Table 3).

(A) Full (B) Post 2013 (C) Rural (D) Urban (E) Min 3 years

R2 Consumption 0.005(0.003) 0.003(0.002) 0.017(0.001) -0.045(0.005) 0.021(0.002)
R2 Asset wealth 0.035(0.002) 0.042(0.005) 0.044(0.004) 0.009(0.005) 0.070(0.005)

N 6401 2932 4417 1984 4011

Table 3: Temporal model performance for different subsamples of the data. Columns present R2 values
when restricting the sample based on different criteria. Reported R2 values are averaged over 10 repeated runs
of 5-fold spatial CV — standard deviations in parentheses. (A) All cluster-year observations, (B) only cluster-
year observations post 2013, (C) and (D) only rural or urban clusters, (E) ensures at least 3 years between
repeated observations.

4 DISCUSSION

Our main findings suggest that publicly available medium-resolution satellite and OSM data have a
limited capacity to approximate annual material wealth at the cluster level. While these data sources
allow for explaining a considerable share of spatial variation, they fall short of explaining temporal
variation in material wealth. A central real world application of this finding is that, when used
without more sophisticated and proprietary data (e.g., reflecting mobile phone or internet usage),
these non-traditional data sources cannot shed light on which policies are most effective in raising
living standards because they do not allow for approximating the evolution of material wealth over
time. Nevertheless this work confirms that satellite and OSM data produce detailed, static maps
of material wealth, which can aid efficient targeting of anti-poverty programs (Aiken et al., 2022;
Smythe & Blumenstock, 2022).

Overall, these findings underscore the need for more nuanced models to predict temporal changes
in material wealth, enabling rigorous policy evaluations in the region. Repeatedly counting objects
on high resolution satellite images, such as vehicles or roofing materials and comparing them over
time is a promising avenue for future research to improve temporal predictions. If successful, such
an approach would also increase model interpretability, as predictions could be linked to the specific
object counts. Moreover, exploring data related to human activity, such as mobile phone meta data
(Blumenstock et al., 2015) or social media data (Fatehkia et al., 2020) for spatial prediction, offer
alternative avenues for temporal prediction.
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