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ABSTRACT

This study investigates how conditional normalizing flows can be applied to re-
mote sensing data products in climate science for spatio-temporal prediction. The
method is chosen due to its desired properties such as exact likelihood com-
putation, predictive uncertainty estimation and efficient inference and sampling
which facilitates faster exploration of climate scenarios. Experimental findings
reveal that the conditioned spatio-temporal flow surpasses both deterministic and
stochastic baselines in prolonged rollout scenarios. It exhibits stable extrapolation
beyond the training time horizon for extended rollout durations. These findings
contribute valuable insights to the field of spatio-temporal modeling, with poten-
tial applications spanning diverse scientific disciplines.

1 INTRODUCTION

Global Climate Models (GCMs) describe physical processes by partial differential equations. These
are often computationally expensive due to coarse grid discretization and solving over large spatial
and temporal domains. Yet, there’s a growing need for precise forecasts of Earth’s climate, not just
globally but also locally. This is crucial for guiding local responses to extreme weather events and
implement adaptive strategies for e.g. water management or agricultural practices. To bridge this
disparity, the machine learning community contributed vastly with deep learning based methods
for climate variable super resolution to obtain high-resolution simulation data (Wang et al., 2018;
Watson et al., 2020; Groenke et al., 2020; Singh et al., 2019; Harder, 2022; Watson et al., 2020;
Chaudhuri & Robertson, 2020). Moreover, researchers are drawing inspiration from video prediction
techniques utilizing deep learning, including recurrent neural networks (RNNs) and convolutional
neural networks (CNNs), as well as stochastic approaches to accelerate the emulation of future states
of remote sensing variables (Rasp & Lerch, 2018; Reichstein et al., 2019; Rasp et al., 2018; Ravuri
et al., 2021a; Klemmer et al., 2021; Saxena & Cao, 2019; Zhu et al., 2020; Ben-Bouallegue et al.,
2023; Ali et al., 2021; Amato et al., 2020; Wang et al., 2022; Ferchichi et al., 2022; Pisl et al.,
2023; Drees et al., 2022; Rußwurm & Körner, 2018; Gao et al., 2020; Ji et al., 2023; Ravuri et al.,
2021b). This approach can facilitate faster exploration of climate scenarios and potentially enhance
the efficiency of GCM-based climate research and decision-making processes. These contributions
could allow researchers to incorporate subgrid convective processes in climate models, allowing for
more accurate predictions of thunderstorms, heavy rainfall events and tropical cyclones.

In this work, we propose conditional normalizing flows for spatio-temporal modelling of remote
sensing data products for climate science. Specifically, we investigate the capabilities of conditional
normalizing flows for climate variable forecasting of different temporal and spatial resolutions. In-
vertible stochastic models allow for exact likelihood computation, predictive uncertainty estimation
and fast inference and sampling. Flows for video modelling have yet been explored (Kumar et al.,
2019; Zand et al., 2022; Davtyan et al., 2022). Different from the literature, in our approach temporal
correlations are learned via conditioning on a compressed memory state produced by a convolutional
gated LSTM (Dauphin et al., 2016) of the input frame. Our main contribution can be summarized
as follows:
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• We introduce a novel method for efficient spatio-temporal modelling with conditioned nor-
malizing flows.

• We employ ST-Flow on ERA5 data, revealing its consistent and stable performance over
long rollout durations, as measured by the RMSE metric, when compared against both
deterministic and stochastic baselines.

2 METHOD

A Normalizing Flow in continuous space is based on the change of variables formula. Given two
spaces of equal dimension Z and X ; a diffeomorphism fϕ : X → Z and a prior distribution pz(z)
which is easy to sample from, we can model a complicated distribution pX(x) as

pX(x) = pZ(fϕ(x))

∣∣∣∣∂fϕ(x)∂x

∣∣∣∣ . (1)

Here |∂fϕ(x)/∂x| is the determinant of the Jacobian of the transformation between z and x, evalu-
ated at x, accounting for volume changes in pz(z) induced by fϕ. Typically, the transformation fϕ
is defined as composition of diffeomorphisms, i.e. f = f0 ◦ f1 ◦ ... ◦ fK .

2.1 CONDITIONED SPATIO-TEMPORAL NORMALIZING FLOW

We propose using conditional normalizing flows (Winkler et al., 2019; Lugmayr et al., 2021) for
spatio-temporal sequence prediction. Invertible stochastic methods are particularly desirable for the
task of climate variable prediction due to their ability to capture predictive uncertainty, ability to
generate synthetic data for scenario analysis and handling missing data and imputation. Assume we
have a target frame xt and a context frame which can be arbitrarily long (xt−1, . . . ,xT ) at the t-th
time-step such that we have the training tuple (xt;x<t) ∈ {Xt}. We learn a complicated distribution
px(xt|x<t) using a conditional prior pθ(zt|z<t) and a mapping fϕ : X t × X<t → Zt, which is
bijective in X t and Zt. The likelihood of this model can then be written as:

px(xt|x<t) = pθ(zt|z<t)

∣∣∣∣det ∂zt∂xt

∣∣∣∣ = pθ(fϕ(xt,x<t)| z<t)

∣∣∣∣det ∂fϕ(xt,x<t)

∂xt

∣∣∣∣ . (2)

Over the temporal axis, the latent prior can then be factorized as:

pθ(z|h) =
T∏

t=1

pθ(zt|ht), (3)

where h = GatedConvLSTM(xt−1, xt−2, ...) represents the hidden state at time t. We chose a gated
convolutional LSTM due to its ability to efficiently capture long-range dependencies in sequential
data while addressing the vanishing gradient problem, which is crucial for tasks requiring robust
representation of past states and inputs. Factorization of hierarchical latent variables {zlt}Ll=1 =
fϕ(xt,x<t) over the scales can then be written as:

pθ(zt|ht) =

L∏
l=1

pθ(z
(l)
t |z(>l)

t ,ht), (4)

where z
(>l)
t is the set of latent variables at the same time step at higher scales. At each scale l, the

split prior pθ(z
(l)
t |z(>l)

t ,ht) takes on the form of a conditionally factorized Gaussian density:

pθ(z
(l)
t |z(≥l)

t ,ht) = N (z
(l)
t ;µ, σ)

where µ, log(σ) = NNθ(z
(≥l)
t ,ht),

(5)
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Temperature

Geopotential

Figure 2: Visualization of rollout trajectories starting from the same initial conditions on the ERA5
temperature and geopotential dataset from the conditional normalizing flow model. The last row
shows the squared absolute error. For rollouts from other methods, see appendix.

where NNθ is a CNN to predicting µ and log σ. The learning objective of the full model with
memory-based latent dynamics can then be formulated as:

log px(x|h) = log pθ(z|h) +
K∑

k=1

log

∣∣∣∣det ∂fk(zk;h)

∂fk−1(zk−1,h)

∣∣∣∣ , (6)

where K represents the number of flow steps. An overview of the model architecture is provided in
Figure 1.

3 EXPERIMENTS

Figure 1: ST-Flow architecture with K flow steps
and L scales. For further explanation, see Ap-
pendix A.

We conduct experiments on ERA5 remote sens-
ing data products, which are produced by the
European Centre for Medium-Range Weather
Forecasts (ECMWF). ERA5 data is generated
using state-of-the-art numerical weather predic-
tion models, assimilating a wide range of obser-
vational data sources, such as satellites, weather
stations, and ocean buoys. Figure 3 describes
a summary of the datasets used in this study.
For preprocessing, we transform values Z by
X = Z−minZ

maxZ−minZ such that they lie within
range [0,1]. We employ a learning rate of 2e-4
using a Step-Wise learning rate scheduler with
a decay rate of 0.5 after every 200000th pa-
rameter update step. We used the Adam op-
timizer (Kingma & Ba, 2014) with exponen-
tial moving average and coefficients of running
averages of gradients and its square are set to
β = (0.9, 0.99).

Dataset Resolution Time Span Training/Validation/Test Samples
T2M 0.25° 1979 - 2020 1193 / 340 / 170

500 hPa 5.625° 1979 - 2017 298,043 / 17,532 / 35,064

Figure 3: Dataset summary with their resolutions, time spans, and training/validation/test samples.
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(a) T2M (b) 500 hPa

Figure 4: RMSE curves over 100 test samples on the ERA5 daily temperature and hourly geopo-
tential dataset computed for different models. The vertical line indicates the length of the context
window size during training, which we set to 2.

3.1 QUANTITATIVE RESULTS

In Figure 4 we present a comparative analysis of the ST-Flow against two deterministic approaches
(3DUNet and ConvLSTM), as well as a spatio-temporal conditional GAN serving as stochastic base-
line using the RMSE metric. All models were trained with the same parameter budget and on the
original input resolutions of the respective datasets for a lead time of 30 time-steps. Examining the
results on the hourly geopotential dataset (Fig. 4 a)) reveals an initial advantage for the determin-
istic methods over the stochastic ones in terms of performance. However, as the rollout trajectory
progresses, the ST-Flow model consistently maintains the most stable RMSE scores throughout the
entire duration. Conversely, the conditional GAN architecture exhibits the poorest performance
among the models evaluated. On the daily temperature dataset (Fig. 4 b)), results indicate that
the deterministic methods perform better initially, but decrease in performance for longer rollout
durations. The stochastic methods provide more stable results over the whole rollout period. On
the hourly dataset, the variability in performance is lower than for the coarser temporally resolved
temperature dataset for all models.

The initial advantage for deterministic methods over stochastic ones, such as observed in the hourly
geopotential dataset, can be attributed to their ability to effectively capture short-term patterns and
dependencies within the data. Deterministic methods excel at directly predicting the next value in a
sequence based on the current and past observations, which can be advantageous in scenarios where
short-term trends dominate the data. However, as the rollout trajectory progresses, deterministic
methods may struggle to maintain accurate predictions over longer horizons due to their inherent
limitations in capturing complex, evolving patterns and dependencies. These methods may become
increasingly susceptible to errors accumulating over time, leading to a degradation in performance.

The conditional GAN provides superior performance over the ST-Flow on the temperature dataset,
but not on the geopotential dataset. This may be attributed to the simpler temporal and spatial
dynamics in the temperature dataset as compared to the geopotential dataset.

In contrast, the ST-Flow model, demonstrates greater stability in RMSE scores over the entire dura-
tion of the rollout trajectory on both datasets. By leveraging its capacity to capture spatio-temporal
long-term relationships, the ST-Flow model can make more robust and consistent predictions over
extended horizons compared to deterministic methods.

Overall, the observed trends underscore the importance of considering the modeling capabilities
of different approaches, as well as the specific characteristics and dynamics of the dataset, when
assessing performance over varying prediction horizons.

3.2 EFFICIENT SPATIAL REPRESENTATION LEARNING FOR CLIMATE VARIABLE
FORECASTING WITH CONDITIONAL NORMALIZING FLOWS

In this experiment, we leverage the power of conditional normalizing flows as auto-encoders to
efficiently reduce the spatial dimensionality of input frames. Subsequently, we employ simulations
based on these condensed representations, providing a streamlined method for handling large-scale
climate datasets. The outcomes, depicted in Figure 5, present the RMSE results of the spatio-
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(a) T2M (b) 500 hPa

Figure 5: RMSE curves over 100 test samples on the ERA5 daily temperature and hourly geopoten-
tial dataset for different input resolutions of the data (orig,4x,8x,16x). The vertical line indicates the
length of the context window size during training, which we set to 2.

temporal normalizing flow across a spectrum of downsampling resolutions (4x, 8x, 16x) applied
during the simulation. These RMSE values are computed within the reconstructed original image
space, achieved through the training of a conditional normalizing flow as post-processing operation.

Generally, findings from both datasets indicate that for longer rollout durations, employing a coarser
spatial representation yields more stable outcomes. The phenomenon of employing a coarser spatial
representation leading to more stable outcomes for longer rollout durations can be attributed to
several factors. Firstly, by simplifying the system’s dynamics through coarsening, the complexity of
the simulation is reduced, making it more resilient to small-scale fluctuations or uncertainties that
may arise over time. Secondly, the smoothing effect of coarsening, achieved through averaging or
aggregating spatial information, helps to dampen out noise or variability at smaller scales, resulting
in a smoother and more predictable system behavior. Additionally, the computational efficiency
gained from using a coarser spatial representation enables longer simulations to be conducted more
efficiently, allowing researchers to study the system’s behavior over extended time periods without
significant computational overhead.

However, performance in relation to the downsampling factor varies across datasets, likely due to
discrepancies in spatial and temporal resolutions. For instance, datasets with higher spatial reso-
lutions such as the geopotential dataset may contain more detailed information about the system’s
dynamics, making it challenging to effectively condense the data without losing critical features.
This is also reflected in the results presented in Figure 5 panel b).

The efficacy of dimensionality reduction on input frames lies in its ability to eliminate redundant
information while retaining essential data necessary for subsequent prediction tasks. By reducing
the dimensionality of the dataset, the model focuses on capturing the most relevant features, leading
to improved efficiency and interpretability. This process helps in discarding extraneous details that
may introduce noise or complexity without adding significant value to the predictive task at hand.
As a result, the dimensionality reduction enhances the model’s ability to generalize patterns and
make accurate predictions, even when operating on lower-dimensional representations of the input
data.

4 CONCLUSION

Experimentally, we have shown that deterministic methods initially outperform stochastic ones due
to their proficiency in capturing short-term patterns, notably in the geopotential dataset. However,
their performance declines over longer horizons due to limitations in capturing evolving patterns.
Overall, experiments with the ST-Flow show that simplifying the spatial representation of the system
aids in stabilizing its behavior over longer durations by reducing complexity, smoothing variability
and improving computational efficiency. In summary, while the existing ERA5 datasets may be a
great proof of concept, it is important to evaluate the trade-offs between computational complexity,
data accuracy, and the specific needs of the real-world modeling task. Also, there is a need for
exploring model calibration techniques such as incorporating physics-informed neural networks to
ensure that predictions of AI models accurately reflect the true underlying data distribution and
account for any systematic biases or errors.

5



ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

REFERENCES

Ahmad Ali, Yanmin Zhu, and Muhammad Zakarya. Exploiting dynamic spatio-temporal graph convolutional
neural networks for citywide traffic flows prediction. Neural networks : the official journal of the Interna-
tional Neural Network Society, 145:233–247, 2021. URL https://api.semanticscholar.org/
CorpusID:240238949.

Federico Amato, Fabian Guignard, Sylvain Robert, and Mikhail F. Kanevski. A novel framework for spatio-
temporal prediction of environmental data using deep learning. Scientific Reports, 10, 2020. URL https:
//api.semanticscholar.org/CorpusID:229314791.

Zied Ben-Bouallegue, Jonathan A. Weyn, Mariana C. A. Clare, Jesper Sören Dramsch, Peter Dueben, and
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mons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, Rachel Prudden, Amol Mandhane, Aidan
Clark, Andrew Brock, Karen Simonyan, Raia Hadsell, Niall H. Robinson, Ellen Clancy, Alberto Arribas,
and Shakir Mohamed. Skillful precipitation nowcasting using deep generative models of radar. CoRR,
abs/2104.00954, 2021b. URL https://arxiv.org/abs/2104.00954.

Markus Reichstein, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim Denzler, Nuno Carvalhais, and
Prabhat. Deep learning and process understanding for data-driven earth system science. Nature, 566:195 –
204, 2019. URL https://api.semanticscholar.org/CorpusID:61156451.

Marc Rußwurm and Marco Körner. Convolutional lstms for cloud-robust segmentation of remote sensing
imagery. ArXiv, abs/1811.02471, 2018. URL https://api.semanticscholar.org/CorpusID:
53249546.

Divya Saxena and Jiannong Cao. D-gan: Deep generative adversarial nets for spatio-temporal predic-
tion. ArXiv, abs/1907.08556, 2019. URL https://api.semanticscholar.org/CorpusID:
197935426.

Ashutosh Kumar Singh, Adrian Albert, and Brian White. Downscaling numerical weather models with gans.
2019. URL https://api.semanticscholar.org/CorpusID:226785468.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan:
Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, September 2018.

Yanheng Wang, Danfeng Hong, Jianjun Sha, Lianru Gao, Lian Liu, Yonggang Zhang, and Xianhui Rong.
Spectral-spatial-temporal transformers for hyperspectral image change detection. IEEE Transactions on
Geoscience and Remote Sensing, PP:1–1, 01 2022. doi: 10.1109/TGRS.2022.3203075.

Campbell D. Watson, Chulin Wang, Timothy Lynar, and Komminist Weldemariam. Investigating two super-
resolution methods for downscaling precipitation: Esrgan and car, 2020.

Christina Winkler, Daniel E. Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods with con-
ditional normalizing flows. CoRR, abs/1912.00042, 2019. URL http://arxiv.org/abs/1912.
00042.

Mohsen Zand, Ali Etemad, and Michael Greenspan. Flow-based spatio-temporal structured prediction of dy-
namics, 2022.

Shixiang Zhu, H. Milton, Shuang Li, Zhigang Peng, and Yao Xie. Interpretable deep generative spatio-temporal
point processes. 2020. URL https://api.semanticscholar.org/CorpusID:251439773.

7

https://api.semanticscholar.org/CorpusID:43927264
https://www.pnas.org/doi/abs/10.1073/pnas.1810286115
https://arxiv.org/abs/2104.00954
https://api.semanticscholar.org/CorpusID:61156451
https://api.semanticscholar.org/CorpusID:53249546
https://api.semanticscholar.org/CorpusID:53249546
https://api.semanticscholar.org/CorpusID:197935426
https://api.semanticscholar.org/CorpusID:197935426
https://api.semanticscholar.org/CorpusID:226785468
http://arxiv.org/abs/1912.00042
http://arxiv.org/abs/1912.00042
https://api.semanticscholar.org/CorpusID:251439773


ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

Temperature

Geopotential

Figure 6: Visualization of rollout trajectories starting from the same initial conditions on the ERA5
temperature and geopotential dataset from the conditional GAN model. The last row shows the
squared absolute error. For rollouts from other methods, see appendix.

Temperature

Geopotential

Figure 7: Visualization of rollout trajectories starting from the same initial conditions on the ERA5
temperature and geopotential dataset from the convLSTM model. The last row shows the squared
absolute error. For rollouts from other methods, see appendix.

Temperature Geopotential

Figure 8: Visualization of rollout trajectories starting from the same initial conditions on the ERA5
temperature and geopotential dataset from the 3DUNet model. The last row shows the squared
absolute error. For rollouts from other methods, see appendix.
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Table 1: Architecture details for a single coupling layer in the spatio-temporal flow architecture.
The variable cout denotes the number of output channels. All convolutional layers are followed by
a ReLU activation.

Layer Hidden Channels Kernel size
Upsample Conv3d 1 1× 1× 1

Conv3d 512 3× 3
Conv3d 512 3× 3
Conv3d cout 1× 1

A APPENDIX: SIMULATED ROLLOUT TRAJECTORIES

B APPENDIX: ARCHITECTURE

B.1 SPATIO-TEMPORAL CONDITIONAL NORMALIZING FLOW

B.2 GATED CONVOLUTIONAL LSTM

Table 2: Architecture details for the full gated convolutional neural network, as described in Figure
9. We chose n=6 layers for all experiments.

Layer Hidden Channels Kernel size Padding
First Conv3d 128 3x3 1
Last Conv3d 256 3x3 1

Table 3: Architecture details for the gated convolutional layer, as described in Figure 10. The first
convolutional layer is followed by a concatenated ReLU activation.

Layer Hidden Channels Kernel size Padding
Conv3d 128 3x3 1
Conv3d 256 3x3 1
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Figure 9: Schematic of full gated convolutional neural network architecture with n layers.

Figure 10: Schematic of gated convolutional layer. ’val’ stands for output value of the layer.

10


	Introduction
	Method
	Conditioned Spatio-Temporal Normalizing Flow

	Experiments
	Quantitative Results
	Efficient Spatial Representation Learning for Climate Variable Forecasting with Conditional Normalizing Flows

	Conclusion
	Appendix: Simulated Rollout Trajectories
	Appendix: Architecture
	Spatio-Temporal Conditional Normalizing Flow
	Gated Convolutional LSTM


