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ABSTRACT

Land cover classification and change detection are two important applications of
remote sensing and Earth observation (EO) that have benefited greatly from the
advances in deep learning. Convolutional and transformer-based U-net models
are the state-of-the-art architectures for these tasks, and their performances have
been boosted by an increased availability of large-scale annotated EO datasets.
However, the influence of different visual characteristics of the input EO data on a
model’s predictions is not well understood. In this work we systematically exam-
ine model sensitivities with respect to several color- and texture-based distortions
on the input EO data during inference, given models that have been trained without
such distortions. We conduct experiments with multiple state-of-the-art segmenta-
tion networks for land cover classification and show that they are in general more
sensitive to texture than to color distortions. Beyond revealing intriguing charac-
teristics of widely used land cover classification models, our results can also be
used to guide the development of more robust models within the EO domain.

1 INTRODUCTION

Land cover classification is a key application for remote sensing and Earth observation (EO) data, as
it provides essential information for various domains, such as urban planning, environmental moni-
toring, disaster management, and agriculture. Deep neural networks, such as CNNs and transform-
ers, have demonstrated impressive capabilities and results for processing satellite imagery (Florian
& Adam, 2017; Wang et al., 2022; Zhao et al., 2023). However, these models, and the methods used
to regularize them (e.g. common image augmentation techniques), are mostly developed and tested
on standard imagery (e.g. from ImageNet), which may differ from EO images in several aspects.
For instance, previous studies have shown that CNNs trained on ImageNet rely more on texture than
on color or shape (Hermann et al., 2020). Such dependencies are less explored in the EO domain,
where texture and color may change due to factors such as seasonality, weather, and sensor noise. It
is thus essential to understand how different types of visual features and data distortions affect the
performance and robustness of deep learning models for EO tasks, and to develop new models and
methods that are more suitable for EO data (Rolf et al., 2024).

In this work we aim to provide a better understanding of how different types of test time distortions
affect the performance of popular models trained on EO data for land cover classification, and to
motivate the development of new data augmentation techniques that are more appropriate for EO
models. We study the inductive biases and invariances of popular deep learning models for land
cover classification, by applying various test time image distortions that the models have not seen
during training. We propose a set of image distortion functions that are independently applied per
image and semantic class in land cover data: (i) converting the pixels of a class into gray-scale1

(color distortion), and (ii) randomly swapping pixel values within a class in an image (texture dis-
tortion); see Fig. 1. We then evaluate the performance of the models on OpenEarthMap Xia et al.

1Other transformations are also explored in the appendix.
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Figure 1: Example image from the training dataset (OpenEarthMap). The class considered here is
tree. Yellow and dark blue respectively show pixels predicted as tree and not tree. Top row: Original
image, image with gray-scale transformation (color distortion) applied, and image with pixel-swap
transformation (texture distortion) applied, respectively. Note that in the middle, the trees are gray
even if they appear to be in color at a glance. Bottom row: Model predictions for the corresponding
images in the first row. The transformations are defined in §3; more transformations are explored in
the appendix. Predictions made using U-Net-Efficientnet-B4.

(2023), a large-scale and fully labeled benchmark dataset of high-resolution aerial images, under
different distortion settings. Our results reveal the strengths and limitations of deep learning models
for land cover classification, and offer guidance for future research and improvement.

2 RELATED WORK

Image distortions, such as blur, noise, contrast variation, and JPEG compression, can substantially
degrade the accuracy of deep neural networks (DNNs) when applied to the input data. This phe-
nomenon has been demonstrated by Dodge & Karam (2016), who evaluated the impact of different
quality distortions on CNNs. Zhou et al. (2017) further investigated the performance of CNNs under
blur and noise distortions, and proposed to improve the model robustness by re-training with noisy
data. Our work is related to these works, as we also investigate the robustness of DNNs on distorted
data. However, our focus is to investigate model sensitivities specifically on EO data, and we leave
the development of more robust solutions to future work.

It was shown by Hermann et al. (2020) that common augmentation techniques, such as Random
Resized Crop, can introduce bias towards texture rather than shape in the domain of standard image
classification. They postulated that aggressive crops may remove distinguishing shape information
and push the network to learn to discriminate by texture. We show that DNNs trained on EO data are
inherently biased to discriminate by texture even without applying such augmentation techniques.
Contemporary work by (Gong et al., 2024) explores segmentation model sensitivity with respect to
color variances that are introduced at test time in the standard image domain. They also propose
training strategies oriented towards rendering models invariant to color perturbations. However,
as our results suggest, segmentation models trained on EO data are already largely color invariant
without applying such training strategies. This in turn points to important differences between biases
in models trained on data from these two domains.

3 EXPERIMENTAL SETUP AND DESCRIPTION OF IMAGE DISTORTIONS

We train and evaluate three models – both CNN- and transformer-based ones – on OpenEarthMap,
a large-scale benchmark for land cover classification. It contains 5,000 aerial and satellite images
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Figure 2: Impact of the gray-scale (top) and pixel-swap (bottom) transformations at test time on
the validation set for the three segmentation models outlined in §3. From left to right: U-Net-
Efficientnet-B4, DeeplabV3-Resnet50, and FTUNetFormer. The solid black curve is the mean of the
colored curves (validation data), and the dashed black curve is the corresponding mean on training
data (included for comparison). Models are generally more sensitive to texture than color distortions.
The pixel-swap plot curves are the mean over three realisations of the pixel-swap transform.

(RGB imagery) with 8 class labels at a resolution of 0.25-0.5m. The images span 97 regions from
44 countries across 6 continents, and are split into training, validation, and test sets (we use the
official splits). We compare three segmentation models: U-Net-EfficientNet-B4 (Iakubovskii, 2019),
DeeplabV3-ResNet50 (Florian & Adam, 2017), and FTUNetFormer Wang et al. (2022). During
training, we apply only horizontal and vertical flips (an independent 50% probability for each) as
data augmentations. Thus note that we do not apply any of the distortions described below2

during training (relevant follow-up experiments would however include investigating the effect of
applying them also during model training). We use random crops of size 512 × 512 with a batch
size of 10 during training, and full-size images during evaluation (more details are in the appendix).
We ignore the background class; it constitutes ∼ 0.6% of all pixels and is also ignored in the official
OpenEarthMap benchmark.

Gray-scale transformation (color distortion). Let Ic = {(ik, jk)}Kk=1 denote the set of pixel
positions corresponding to class c in a given RGB aerial or satellite image I . Let I(i, j) ∈ [0, 255]3

denote the pixel (three channels) at coordinate (i, j) ∈ Ic, and let λ ∈ [0, 1]. Then, the gray-scale
transformation for image I and class c is defined as I(i, j) = (1 − λ)I(i, j) + λG(i, j), where
G is a corresponding gray-scale image derived by the rgb2gray transformation from Scikit-image.
Other pixels are left unchanged. The gray-scale image is duplicated over the three color channels,
i.e. G(i, j) ∈ [0, 255]3 has the same value in each element. See Fig. 1 for an example with λ = 1.

Pixel-swap transformation (texture distortion). For a pixel-swap proportion p we randomly sam-
ple pK pixel positions without replacement from Ic and randomly permute the pixel values at these
positions. Other pixels are left unchanged here as well. See Fig. 1 for an example with p = 1.

4 EXPERIMENTAL RESULTS

Fig. 2 demonstrates the impact of the gray-scale and pixel-swap distortions (at varying intensities,
see x-axes) on test time predictions on unseen validation data. Recall that the models were trained
without any such distortions. We see that for all models, but particularly for U-Net-Efficientnet-B4
(left), there is quite a strong invariance to color distortions (top row), i.e. even though the images
are severely altered and moved far in image space, performance does not suffer much in general.

2Please also see to the appendix for additional test time image distortions and associated results.
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Figure 3: Top: Zanzibar region, pixel-swap transformation on the bare class with proportion p
swapped, where p ∈ {0, 0.33, 0.66, 1} (left to right). Middle: Corresponding model predictions,
where yellow and dark blue respectively show pixels predicted as bare and not bare. The border
region remains correctly classified regardless of transformation intensity, so the surrounding context
is critical. Bottom: Same as middle, but predictions obtained from the same images and distortions
as in the first row, but where all pixels except bare ones have been masked out in the images by
replacing them with the per-channel mean of the training set (more such results are in the appendix).
The importance of context is clear. Predictions made using the U-Net-Efficientnet-B4 model.

For some classes however (e.g. range), performance deteriorates as the images become fully gray-
scale transformed. We also see that although the models have similar mIoUs (black curves) under
no gray-scale transformation, and similar degradation trends, the transformer-based model (right in
Fig. 2) seems to be the most sensitive to color distortions.

As for texture distortion (pixel-swaps, see bottom row) we see more rapid performance drops in
general. For smaller distortions, e.g. pixel-swap proportions of 0.1-0.3, we see performance degra-
dations for several classes and on average for all three models. At these lower distortion proportions
it is difficult for the human eye to notice any changes, as can be seen in the examples in the appendix.
However, note that even though the models are shown to be sensitive to texture distortions, none of
the IoUs approach zero as the intensity of the transformation grows. In Fig. 3 we show how the
model prediction for the range class for one of the images changes as the intensity of the pixel-swap
transformation increases. Note how the interior of the region associated with the class becomes in-
creasingly misclassified, while the border remains correctly classified. This coupled with the third
row of Fig. 3 clearly indicates that the network leverages surrounding context for its predictions. We
refer the reader to the appendix for more quantitative and qualitative results.

Finally, we note that range and tree are among the classes that are most affected by degradations
– be them color- or texture-based – even though they are among the most common classes in the
training set (measured in total number of pixels). Thus, somewhat counter-intuitively, the robustness
to distortions for a given class is not related to the relative amount of training data for said class.

More on the importance of surrounding context. We here further examine how model predic-
tions for a given class are affected by context from neighboring pixels of other classes (beyond the
qualitative example in Fig. 3, more of which are found in the appendix). As a basis for this investi-
gation we use the pixel-swap transformation, but here we also replace all pixel values not related to
the class under investigation with the per-channel mean of the training data set, in order to remove
all surrounding context. See Fig. 8 and Fig. 9 in the appendix for two qualitative examples. We
see that removing context affects model predictions significantly, and in particular that the accuracy
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Figure 4: Impact of the pixel-swap transformation where all pixels except for the class under in-
vestigation are replaced by the per-channel mean of the training set. Results are shown for the
three segmentation models outlined in §3. From left to right: U-Net-Efficientnet-B4, DeeplabV3-
Resnet50, and FTUNetFormer. The solid black curve is the mean of the colored curves (validation
data), and the dashed black curve is the corresponding mean on training data (included for compar-
ison). Models perform significantly worse in general, compared to the case where context is kept
intact (see also Fig. 5).

Figure 5: Comparison of keeping context intact (blue) and removing context (red), with various
proportions of the pixel-swap transformation. The blue curves are identical to the means (in black)
of Fig. 2. The red curves are identical to the means (in black) of Fig. 4. From left to right: U-Net-
Efficientnet-B4, DeeplabV3-Resnet50, and FTUNetFormer. There is a significant performance drop
at all proportions p, even when no pixel-swap is applied (p = 0), and the difference between the
training and validation set is vastly smaller when surrounding context is removed.

deteriorates much faster as the pixel-swap proportion p increases, compared to the setting where the
context is kept intact. In Fig. 8 we see that the border predictions also fail when context is absent,
while in Fig. 9 we see a significant drop in prediction accuracy even at p = 0.

In Fig. 4, the effect of context removal is quantitatively examined on the whole validation set (in-
cluding also average results on the training set, for comparison). Comparing with Fig. 2, we see
that removing context yields a significant performance drop in general. There is also a smaller gap
in performance between the training and validation sets when context is removed, even for p = 0
(i.e. with no pixel-swap applied). This suggests that removing surrounding information inhibits the
model from making correct predictions for the class of interest, whether or not this is data on which
the model has been trained. To make these comparisons easier, see also Fig. 5.

5 CONCLUSIONS

In this paper we have investigated the impacts of several test time color and texture distortions
on EO imagery. Our experiments – conducted using popular CNN- and transformer-based models
– suggest that deep networks, which have not been exposed to these distortions in training, are
relatively robust to EO image color distortions but are sensitive to texture distortions. Further, our
experiments indicate that models use the surrounding context when making predictions and are
sensitive to changes in this context. These empirical findings, while intriguing on their own, also
point to many future areas of potential research and improvements regarding land cover classification
and EO tasks more broadly. For example, since our results suggest that there is a large variation in
how different classes are affected by the various distortions, it may be possible to leverage these
insights to develop effective class-dependent data augmentation techniques in the EO domain.
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Appendix: Impacts of Color and Texture Distortions on
Earth Observation Data in Deep Learning

In this appendix we provide several additional results (both quantitative and qualitative) for the
image distortions introduced in the main paper, as well as for additional distortions defined in this
appendix. We also provide more details regarding our experimental setup.

Additional experimental setup details. For convenience, before expanding with additional details,
we first attach here some of the implementation details that were already explained in the main pa-
per. During training, we apply only horizontal and vertical flips (an independent 50% probability
for each) as data augmentations. Thus note that we do not apply any of the color- or texture-based
distortions during training. All three models (see §3 in the main paper) are trained and evaluated on
images resized to 512 × 512 or 1024 × 1024, however during training we sample random crops of
size 512×512 from these images, for 2,000 epochs with a batch size of 10, and the best ones are se-
lected based on the validation mIoU. We use a standard cross-entropy loss and the Adam optimizer
(Kingma & Ba, 2014) with learning rate 0.0002, β1 = 0.5, and β2 = 0.999. We ignore the back-
ground class; it constitutes ∼ 0.6% of all pixels and is also ignored in the official OpenEarthMap
benchmark.

Additional color distortion experiments. Here we include experimental results for additional
forms of color distortion, which we commonly refer to as color-duplication, as described next.

Color-duplication: As in the main paper, let Ic = {(ik, jk)}Kk=1 denote the set of pixel positions
corresponding to class c in a given RGB aerial or satellite image I . The color-duplication transfor-
mation is somewhat similar to the gray-scale transformation defined in the main paper. However,
instead of a convex combination between the class c-related pixels of the original image I and a gray-
scale counterpart G, we first copy one color channel Ih (with h ∈ {R,G,B} and where R, G and B
respectively denote the red, blue and green color channels), and then construct the color-duplicated
image ID = [Ih; Ih; Ih]. Given ID, the class c-related color duplication at mixing proportion λ
is given by I(i, j) = (1 − λ)I(i, j) + λID(i, j) = (1 − λ)[IR; IG; IB ](i, j) + λ[Ih; Ih; Ih](i, j),
where (i, j) ∈ Ic. For example, in the red-duplication case with h = R, the transformation is given
by (1−λ)[IR; IG; IB ](i, j)+λ[IR; IR; IR](i, j) = [IR; (1−λ)IG+λIR; (1−λ)IB +λIR](i, j).
As usual, I is left unchanged for pixels of other classes. Finally, note that we still normalize the
model input with the per-channel means of the training set, even if the channels are changed.

The results for the color-duplication transformations (red-, green- and blue-duplications) are shown
in Fig. 6. As can be seen, despite the extreme nature of this type of color distortion, most classes are
only marginally affected by it. Hence, taken into account also the gray-scale experiments from the
main paper, these results suggest that deep learning models are not very sensitive to color transfor-
mations of EO imagery.

Figure 6: Impact of the color-duplication transformations for the U-Net-Efficientnet-B4 model.
From left to right: Red-duplication, green-duplication, and blue-duplication. The solid black curve
is the mean of the colored curves (validation data), and the dashed black curve is the corresponding
mean on training data (included for comparison). The performance degradation trends are similar for
all three transformations, and are also comparable to the gray-scale color distortion (see main paper).
All taken together, these results suggest that deep networks are quite robust to color distortions on
EO imagery.
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Figure 7: Impact of the gray-scale (top row) and pixel-swap (bottom row) transformations at test
time on the training set for the three segmentation models outlined in §3 (main paper). From left
to right: U-Net-Efficientnet-B4, DeeplabV3-Resnet50, and FTUNetFormer. The solid black curve
is the mean of the colored curves. As is the case on validation data (cf. Fig. 2 in the main paper),
models are generally more sensitive to texture than color distortions on training data as well.

More results for the image distortion experiments in the main paper. Here we show more visual
results for the gray-scale and pixel-swap distortion experiments (i.e. the distortions investigated
in the main paper); see Fig. 10 - 17. In particular, we show qualitative results for each of the
eight classes in the dataset, as we change the intensity of the respective distortions. Note that the
illustrated distortion intensity ranges vary between the examples; these range choices are to a large
extent guided by the class-specific sensitivities seen in Fig. 2 (cf. main paper), and are set in such a
way that interesting accuracy degradations are highlighted where possible. All model predictions in
these qualitative examples are from the U-Net-Efficientnet-B4 model. Finally, for completeness we
also show a plot similar to Fig. 2 (main paper), but for the training set – see Fig. 7.

8



Figure 8: Zanzibar region, pixel-swap transformation on the bare class (expanded version of Fig. 3
(main paper)). Top two rows: Input images and model predictions. Bottom two rows: Input images,
where pixels not of the bare class have been replaced by the per-channel mean of the training set,
and model predictions below. Pixel-swap is applied to the input images with proportion p swapped,
where p ∈ {0, 0.33, 0.66, 1} (from left to right). Note in the bottom row how the prediction accuracy
deteriorates much faster as p increases, compared to the case when the surrounding context is kept
intact (second row). Also note how the border is no longer correctly classified for the input images
when the surrounding context is removed. Predictions made using the U-Net-Efficientnet-B4 model.
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Figure 9: Aachen region, pixel-swap transformation on the agriculture class. Top two rows: Input
images and model predictions. Bottom two rows: Input images, where pixels not of the agriculture
class have been replaced by the per-channel mean of the training set, and model predictions below.
Pixel-swap is applied to the input images with proportion p swapped, where p ∈ {0, 0.33, 0.66, 1}
(from left to right). Removing the surrounding context yields significantly worse predictions for each
proportion p (bottom row), whereas predictions remain accurate independently of p when context is
kept (second row). Predictions made using the U-Net-Efficientnet-B4 model.
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Figure 10: Austin region, transformations on the road class. The top two rows show the gray-
scale transformed images with gray-scale proportion λ ∈ {0, 0.33, 0.66, 1} (from left to right) and
corresponding model predictions below. The bottom two rows show pixel-swap transformed images
with proportion p swapped, where p ∈ {0, 0.1, 0.2, 0.3} (from left to right) and corresponding model
predictions below. We see that the predictions are very robust with respect to color distortion (top),
and very sensitive to texture distortion (bottom).
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Figure 11: Pomorskie region, transformations on the agriculture class. The top two rows show
gray-scale transformed images with gray-scale proportion λ ∈ {0, 0.33, 0.66, 1} (from left to right)
and corresponding model predictions. The bottom two rows show pixel-swap transformed images
with proportion p swapped, p ∈ {0, 0.1, 0.2, 0.3} (from left to right) and corresponding model
predictions below. We see that the predictions are very robust with respect to color distortion (top),
and very sensitive to texture distortion (bottom)
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Figure 12: Paris region, transformations on the developed class. The top two rows show gray-
scale transformed images with gray-scale proportion λ ∈ {0, 0.33, 0.66, 1} (from left to right) and
corresponding model predictions. The bottom two rows show pixel-swap transformed images with
proportion p swapped, p ∈ {0, 0.1, 0.2, 0.3} (from left to right) and corresponding model predictions
below. We see that the predictions are very robust with respect to color distortion (top), and very
sensitive to texture distortion (bottom).
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Figure 13: Mahe region, transformations on the water class. The top two rows show gray-scale
transformed images with gray-scale proportion λ ∈ {0, 0.33, 0.66, 1} (from left to right) and cor-
responding model predictions. The bottom two rows show pixel-swap transformed images with
proportion p swapped, p ∈ {0, 0.33, 0.66, 1} (from left to right) and corresponding model predic-
tions below. We see that the predictions, in contrast to most other classes, are very robust with
respect to color distortion (top) and texture distortion (bottom).
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Figure 14: Svaneti region, transformations on the range class. The top two rows show gray-scale
transformed images with gray-scale proportion λ ∈ {0, 0.33, 0.66, 1} (from left to right) and cor-
responding model predictions. The bottom two rows show pixel-swap transformed images with
proportion p swapped, p ∈ {0, 0.33, 0.66, 1} (from left to right) and corresponding model predic-
tions below. We see sensitivities with respect to color distortion (top), especially with gray-scale
proportion λ = 1. The model predictions are however more sensitive to texture distortion (bottom).
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Figure 15: Jeremie region, transformations on the tree class. The top two rows show gray-scale
transformed images with gray-scale proportion λ ∈ {0, 0.33, 0.66, 1} (from left to right) and cor-
responding model predictions. The bottom two rows show pixel-swap transformed images with
proportion p swapped, p ∈ {0, 0.2, 0.4, 0.6} (from left to right) and corresponding model predic-
tions below. We see that the predictions are robust with respect to color distortion with exception
for gray-scale proportion λ = 1 (top), and sensitive to texture distortion (bottom).
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Figure 16: Mexico City region, transformations on the building class. The top two rows show gray-
scale transformed images with gray-scale proportion λ ∈ {0, 0.33, 0.66, 1} (from left to right) and
corresponding model predictions. The bottom two rows show pixel-swap transformed images with
proportion p swapped, p ∈ {0, 0.2, 0.4, 0.6} (from left to right) and corresponding model predictions
below. We see that the predictions are very robust with respect to color distortion (top), and sensitive
to texture distortion (bottom).
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Figure 17: Lima region, transformations on the bare class. The top two rows show gray-scale
transformed images with gray-scale proportion λ ∈ {0, 0.33, 0.66, 1} (from left to right) and cor-
responding model predictions. The bottom two rows show pixel-swap transformed images with
proportion p swapped, p ∈ {0, 0.1, 0.2, 0.3} (from left to right) and corresponding model predic-
tions below. We see that the predictions are very robust with respect to color distortion (top), and
very sensitive to texture distortion (bottom).
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