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ABSTRACT

Digital Elevation Model (DEM) is an essential aspect in the remote sensing
domain to analyze and explore different applications related to surface elevation
information. In this study, we intend to address the generation of high-resolution
(HR) DEMs guided by HR multi-spectral (MX) satellite imagery as prior. To
promptly regulate this process, we utilize the discriminator activations as spatial
attention for the MX prior, and also introduce a Densely connected Multi-Residual
Block (DMRB) module to assist in efficient gradient flow. Further, we present the
notion of using Sinkhorn distance with traditional GAN to improve the stability
of adversarial learning. In this regard, we provide both theoretical and empirical
substantiation of better performance in terms of vanishing gradient issues
and numerical convergence. We demonstrate both qualitative and quantitative
outcomes with available state-of-the-art methods. Based on our experiments on
DEM datasets of Shuttle Radar Topographic Mission (SRTM) and Cartosat-1,
we show that the proposed model performs preferably against other benchmark
methods. We also generate and visualize several high-resolution DEMs covering
terrains with diverse signatures to show the performance of our model.

1 INTRODUCTION

The Digital Elevation Model (DEM) is a digital representation of any three-dimensional surface. It is
immensely useful in precision satellite data processing, geographic information systems (Trevisani
et al., 2012), hydrological studies (Li & Wong, 2010), urban planning (Priestnall et al., 2000), and
many other key applications. Due to its diverse applications, the accuracy and resolution of DEM
have a substantial impact in different fields of operations (Sørensen & Seibert, 2007; Kim et al.,
2019). The major sources of high-resolution (HR) elevation models are terrestrial and airborne
systems with restricted coverage and they also typically suffer from several issues and systematic
errors Fisher & Tate (2006); Liu (2008). Hence, accurate HR DEM products are expensive, as they
require special acquisition and processing techniques. As an alternative, enhancing the resolution
(super-resolution) of existing DEMs can be seen as the most optimal strategy to address the shortfall.

Research on DEM super-resolution (SR) is limited despite its significance in remote sensing
applications. Generally, traditional methods like linear, and bicubic interpolation are widely used for
DEM SR, but they tend to produce smoothed outputs at high-frequency regions (He & Siu, 2011).
Reconstruction-based methods like steering kernel regression (SKR) (Takeda et al., 2007) or non-
local means (NLM) (Protter et al., 2009), have been proposed to tackle this, however, they still under-
perform at a large magnification factor. After the first introduction of SR using Convolutional Neural
Network (SRCNN) (Dong et al., 2014), its variant D-SRCNN was proposed by Chen et al. (2016)
to address the DEM super-resolution problem which attains performance gain over the traditional
methods. Later, with the introduction of Genrative Adversarial Networks (GANs) (Goodfellow
et al., 2016) and its variants in SR applications like SR using GANs (SRGAN) (Ledig et al., 2017),
Demiray et al. (2020) proposed a DEM super-resolution model, namely D-SRGAN, and later they
suggested another model based on EffecientNetV2 (Demiray et al., 2021) for DEM SISR.
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Figure 1: Overview of the proposed adversarial framework. (a) The generator G takes discriminative
spatial attention from (b) discriminator D as conditional input, paased via a (d) Polarized Self-
Attention (PSA) block. Both G and D constitute of (c) Densely connected Multi Residual Blocks
(DMRBs) with residual convolution block (RCB) as the building block.

However, monocular depth SR using natural HR images as guide is an emerging research field in
computer vision. Some of the pioneering works in this domain are Deformable Kernel Networks
(DKN) and Faster DKN (FDKN) (Kim et al., 2021), Fast Depth map SR (FDSR) (He et al., 2021),
and Deep Anisotropic Diffusion Adjustment (DADA) (Metzger et al., 2023). Inspired by these, we
propose a DEM SR framework that effectively utilizes information from an HR multi-spectral (MX)
image guide by conditioning it with a discriminative spatial self-attention. In this regard, we also
propose a new adversarial learning framework, namely SIRAN (Sinkhorn Regularized Adversarial
Network), as well as generate our own dataset by using realistic coarse resolution data instead of
bicubic downsampled. In next section, we briefly discuss the methodology.

2 METHODOLOGY

In Figure 1, we have illustrated a detailed architectural overview of our framework. The generator
G operates on upsampled coarser resolution DEM x̃, MX image prior z, consisting of false color
composite (FCC) of NIR (R), R (G) and G (B) bands, and polarized self-attention (PSA) (Liu
et al., 2021) of discriminator spatial feature maps, As as conditional input. Let z ∼ PZ , where
z ∈ RH×W×3 with PZ being the joint distribution of FCC composition and x̃ ∼ Px̃, where Px̃
constitute of upsampled coarser resolution DEM with x̃ ∈ RH×W . Let ŷ ∼ PGθ

, where ŷ =
G(x̃, z ⊙ As), where ⊙ denotes the element-wise multiplication and PGθ

denotes the generator
distribution parameterized by θ ∈ Θ. Let y ∼ Py with Py represent the target HR DEM distribution.
The discriminator D classifies y and ŷ to be coming from real or fake sample space and is assumed
to be parameterized by ψ ∈ Ψ.

2.1 NETWORK ARCHITECTURE

We design both G and D models based on ResNet (He et al., 2015) and DenseNet (Huang et al.,
2016). By combining the idea of skip and dense connections, we design a building block, namely a
Densely connected Multi-Residual Block (DMRB) for our overall framework. Each DMRB block is
constituted of multiple densely connected Residual Convolution Blocks (RCBs) as shown in Figure
1 (c). DMRB enables efficient context propagation and also stable gradient flow throughout the
network. We kept the overall design of discriminator D with a similar configuration as G with an
encoder followed by six DMRBs and finally a decoder to unravel the generated samples properly as
shown in Figure 1 (a) and (b), respectively. The discriminator also adds a Multi-Layer Perceptron
(MLP) layer to map its latent features into required shape. Another reason behind the design of
D is to extract dense discriminative latent space features as they can be viewed as spatial attention
to MX guide. Since, discriminators perform binary classification for a given input, apparently, in
latent space, it captures the discriminative features that will help the generator focus on salient
parts of the MX guide. Emami et al. (2019) introduced this concept of transferring domain-specific
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latent knowledge of discriminator as spatial attention to the generator. Therefore, utilizing similar
concept, D in our proposed framework has two functional branches which are classification and
to approximate the spatial attention maps. We use upsampled coarse resolution DEM x̃ to estimate
these attentions. This choice is motivated by the fact that unlike image-to-image translation proposed
by Emami et al. (2019), during the test phase, we do not have high-resolution samples in the target
domain. For this reason, we use the concept of domain adaptation loss (Rout et al., 2020). These
attention maps are passed through a PSA (Liu et al., 2021) block to exclude redundant features while
highlighting significant areas by extracting dense features in both channel and spatial dimension as
shown in Figure 1 (d). The main reason behind choosing PSA is due of its capability to retain the
high internal resolution compared to other self-attention modules. In the following subsection, we
will briefly explain our objective formulation.

2.2 FORMULATION OF OBJECTIVE FUNCTION

Our whole framework is set-up based on adversarial learning. In this regard, WGAN and its
variants (Arjovsky et al., 2017; Gulrajani et al., 2017) serve the purpose in most of the applications
due to their prompt ability to resolve the problems of conventional GAN. However, as they are
designed to solve the Kantarovich formulation of OT problems to minimise the Wasserstein distance,
they suffer from curse of dimensionality due to their sample complexity of O(n−2/d) (Genevay
et al., 2019), given a sample size n with a dimension d. Another key concern of utilizing
these adversarial objectives is the vanishing gradient problem near the optimal point. This leads
the generator to converge to a sub-optimal solution and results in a partially aligned generated
distribution with respect to the true distribution. Therefore, we regularize the objective function
of G with Sinkhorn loss (Genevay et al., 2018) as defined below.

SC,ε = WC,ε(µθ, ν)−
1

2
WC,ε(µθ, µθ)−

1

2
WC,ε(ν, ν), (1)

where, µθ ∈ PGθ
and ν ∈ Py are measure of generated and true distribution with support

included in a compact bounded set X ,Y ⊂ Rd, respectively, and WC,ε is Entropic OT (Aude
et al., 2016a). Hence, it is not only computationally efficient due to its favorable sample complexity
O(n−1/2) Genevay et al. (2019), equation 1 interpolates between OT loss and MMD loss as ε varies
from 0 to ∞. Therefore, by properly tuning ε we can leverage the concurrent advantage of non-flat
geometric properties of OT loss and, high dimensional rigidity and energy distance properties of
MMD loss. Apart from this, the selection of ε also affects the smoothness of Sinkhorn loss (see
proposed Theorem 1 in Appendix §A) which manipulates the overall gradients of G, resulting in
better prevention of vanishing gradient problems near the optimal region (see proposed Theorem 2 in
Appendix §B), and also provides tighter iteration complexity (Rout, 2020) (see proposed Theorem
2 in Appendix §C) resulting in faster convergence compared to other GAN setups. Due to these
advantages, we regularize the generator loss with Sinkhorn distance and refer it as LOT that is
estimated by Sinkhorn AutoDiff Algorithm (Genevay et al., 2018) utilizing ε and the Sinkhorn
iterations T as the major parameters. As Sinkhorn loss also minimizes the Wasserstein distance,
it serves the purpose of WGAN to resolve the issues of original GAN more effectively. Hence, we
stick to classical GAN objective function (LADV ) for the generator to establish adversarial learning
set-up while regularized with Sinkhorn loss. The generator loss also comprises of pixel loss (LP )
and SSIM loss (Lstr). Therefore, the overall generator loss is defined as,

λPLP + λstrLstr + λADV LADV + λOTLOT , (2)
where λP , λstr, λADV and λOT represent the weight assigned to pixel loss, SSIM loss, adversarial
loss, and Sinkorn loss respectively. Similarly, the discriminator objective function can be defined as,

min
D

−Ey∼Py [log(D(y)))]− Eŷ∼PGθ
[log(1−D(ŷ))] + λDALDA, (3)

where λDA is the assigned weight for domain adaptation loss (LDA) (Rout et al., 2020) which is
used to enforce D to mimic the latent features of the HR DEM and sharpen the spatial-attention
maps provided an upsampled coarse DEM. The details of all losses are described in Appendix §D.

3 EXPERIMENTS AND RESULTS ANALYSIS

In this section, we describe our experimental set-up followed by qualitative and quantitative
comparison of our model with bicubic as well as other learning-based state-of-the-art methods such
as ESRGAN (Demiray et al., 2020) and EffecientNetV2 (Demiray et al., 2021), which also includes
recent baseline models for image-guided depth super-resolution like DKN and FDKN (Kim et al.,
2021), DADA (Metzger et al., 2023), and FDSR (He et al., 2021).
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Figure 2: Results for DEM super-resolution (better viewed at 200%) for both inside and ouside India
data and comparisons with other baseline methods.

3.1 DATASET AND IMPLEMENTATION DETAILS

Due to lack of realistic DEM SR dataset, we generate our own dataset. For practical application, we
opt to use real coarse resolution SRTM DEM with a ground sampling distance (GSD) of 30m as input
instead of conventional bicubic downsampled. The HR Indian DEM (GSD=10m) from Cartosat-1
stereoscopic mission is considered our ground truth while the HR MX data (GSD=1.6m) from the
Cartosat-2S mission serves as the image guide for our DEM SR task. The DEMs are upsampled to
the resolution of MX images using bicubic interpolation to generate a paired dataset. This also helps
in increasing the training samples as well as assists the model to learn dense HR features from the
prior. The dataset consists of 72,000 paired patches of size (256, 256), featuring diverse landscapes
such as vegetation, mountains, and, water regions. We use 40,000 samples for training, 20,000 for
cross-validation, and 12,000 for testing, including 10,000 patches from the Indian subcontinent and
the rest outside India. As ground truth DEM data is only available for Indian regions, our model is
trained on limited landscapes. To check its generalization capability, we test our model on data from
the Fallbrook region, US, where Cartosat DEM data is unavailable. For them, we validate our result
using available 10m DEM data of the 3D Elevation Program (3DEP) (, USGS). For fair comparison,
the guided SR models (DKN, FDKN, DADA and FDSR) are trained from scratch with our generated
dataset with MX guide image while ESRGAN and EffecientNetV2 are trained without any guide, as
they lack provisions for guide usage. Other implementation details are explained in Appendix §E.

3.2 RESULTS ANALYSIS

Table 1: Quantitative comparison with state-of-the-art methods for both patches of inside and outside
India. First and second methods are highlighted in red and green, respectively.

Method RMSE (m) MAE (m) SSIM(%) PSNR
Dataset Inside Outside Inside Outside Inside Outside Inside Outside
Bicubic 15.25 23.19 12.42 22.04 71.27 66.49 30.07 27.79

ENetV2 Demiray et al. (2021) 20.35 30.53 18.72 28.36 69.63 60.04 31.74 25.58
DKN Kim et al. (2021) 12.89 21.16 11.18 19.78 73.59 68.45 32.09 28.22

FDKN Kim et al. (2021) 13.05 21.93 11.34 20.41 74.13 66.83 32.46 27.68
DADA Metzger et al. (2023) 37.49 40.89 32.17 37.74 73.32 69.86 27.94 26.78

ESRGAN Demiray et al. (2020) 31.33 20.45 25.56 18.34 82.48 75.67 29.88 29.05
FDSR He et al. (2021) 12.98 30.58 10.87 25.28 81.49 59.81 33.77 25.59

SIRAN (ours) 9.28 15.74 8.51 12.25 90.59 83.90 35.06 31.56

Figure 2 demonstrates the qualitative comparison of our proposed method, where SIRAN highlights
key features and retains the perceptual quality with respect to ground truth showcasing its
generalization capability. Although ESRGAN and FDSR perform well, ESRGAN tends to produce
artifacts and noise while FDSR inpaints unnecessary image details in the generated HR DEMs in
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Figure 3: Line profile analysis of SIRAN and
other baselines.

Figure 4: 3-D visualization of Super-resolved
and SRTM DEM (better at 200%)

outside India data due to low generalization capability. The quantitative comparison presented with
respect to RMSE (m), MAE (m), PSNR and SSIM in table 1 supports these observations. For both
inside and outside India patches, our method captures HR structural details resulting in improvement
of more than 24% in RMSE and MAE, 8% in SSIM, and 2dB in PSNR. Hence, both quantitative
and qualitative analysis suggest that our proposed method SIRAN not only generate high-resolution
DEM to the closest proximity of ground truth but also has superior generalization capability for out-
of-domain samples. We further validate this by line-profile comparisons as shown in Figure 3 where
we show SIRAN’s low bias and close adherence to true elevation values. Additionally, in Figure
4, we demonstrate 3-D visualization of generated DEMs, corresponding to a region, where ground
truth is unavailable. We compare it with available SRTM DEM, and clearly, our topographic view of
generated DEM captures sharper features in mountainous regions as well as in the tributaries of the
water basin area. Ablation studies related choice of different modules and loss functions are carried
out in Appendix §F.

4 CONCLUSION

In this paper, we demonstrate an effective approach for DEM super-resolution using realistic coarse
data samples. Unlike regular SISR, the proposed method uses high-resolution MX images as prior in
a specially designed architectural framework consisting of spatial attention maps from discriminator,
PSA, and DMRBs. We also develop a new GAN set-up based on optimization of Sinkhorn
distance regularized adversarial learning. We provide theoretical and empirical evidence to show
how this choice stabilizes the training of our adversarial model and improves its convergence. We
perform quantitative and qualitative analysis by generating and comparing DEMs related to different
signatures along with investigating generalization capability by testing out-of-domain samples. We
also analyse how each proposed module affects the outcomes. Our method achieves favorable results
compared to other state-of-the-art methods.

Limitation: The generated dataset contains samples from only Indian subcontinent regions with
limited landscapes and signatures. Therefore, models trained on this dataset may suffer from lack of
generalization in presence of certain signatures like urban area.

Dataset: A subset of our generated dataset will be available at: https://github.com/
subhaISRO/DEM-Super-resolution.git. The details about the dataset will be provided
in the corresponding README.md file.
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A APPENDIX: SMOOTHNESS OF SINKHORN LOSS

Theorem 1 (Smoothness of Sinkhorn loss). Consider the Sinkhorn loss SC,ε(µθ, ν) between two
measures µθ and ν on X and Y two bounded subsets of Rd, with a C∞, L0-Lipschitz, and L1-smooth
cost function C. Then, for (θ1, θ2) ∈ Θ, one has,

E||∇θSC,ε(µθ1 , ν)−∇θSC,ε(µθ2 , ν)||

= O(L(L1 +
2L2

0L

ε(1 +Be
κ
ε )

))||θ1 − θ2||,
(4)

whereL is the Lipschitz in θ corresponding to G, κ = 2(L0|X |+||C||∞),B = d.max(||m||, ||M ||)
with m amd M being the minimum and maximum values in set X . Let Γε represent the smoothness
mentioned above, then we get the following asymptotic behavior in ε:

1. as ε→ 0, Γε → O(
2L2

0L
2

Bεe
κ
ε
)

2. as ε→ ∞, Γε → O(LL1)

Proof. We will define some of the terminologies, which are necessary for this proof. From equation
6 of the main paper, the entropic optimal transport (Aude et al., 2016a) can be defined as,

WC,ε (µθ, ν) = inf
π∈Π(µθ,ν)

∫
X×Y

[C (Gθ (x) , y)]dπ (Gθ (x) , y) + εIπ (Gθ (x) , y) ,

where Iπ (Gθ (x) , y)) =

∫
X×Y

[log

(
π (Gθ (x) , y)

µθ (Gθ (x)) ν (y)

)
]dπ (Gθ (x) , y) ,

s.t.
∫
X
π (Gθ (x) , y) dx = ν (y) ,

∫
Y
π (Gθ (x) , y) dy = µθ (Gθ (x)) & π (Gθ (x) , y) ≥ 0.

(5)

The formulation in equation 5 corresponds to the primal problem of regularized OT and, this allows
us to express the dual formulation of regularized OT as the maximization of an expectation problem,
as shown in equation 6 (Aude et al., 2016b).

WC,ε (µθ, ν) = sup
ϕ,ψ∈Φ

∫
X
ϕ (Gθ (x)) dµθ (Gθ (x)) +

∫
Y
ψ (y) dν (y)

− ε

∫
X×Y

e

(
ϕ(Gθ(x))+ψ(y)−C(Gθ(x),y)

ε

)
dµθ (Gθ (x)) dν (y) + ε

(6)

where Φ = {(ϕ, ψ) ∈ C (X )× C (Y)} is set of real valued continuous functions for domain X and
Y and they are referred as dual potentials. Now, given optimal dual potentials ϕ∗ (·), and ψ∗ (·), the
optmal coupling π∗ (·) as per (Aude et al., 2016b) can be defined as

π∗ (Gθ (x) , y) = µθ (Gθ (x)) ν (y) e
ϕ∗(Gθ(x))+ψ

∗(y)−C(Gθ(x),y)
ε . (7)

To prove Theorem 1, we need an important property regarding its Lipschitz continuity of the dual
potentials, which is explained in the following Lemma.

Lemma A.1. If C (·) is L0 Lipschitz, then the dual potentials are also L0 Lipschitz.

Proof. Assuming ŷ = Gθ (x), then C (ŷ, y) is L0-Lipschitz in ŷ. As, the entropy Iπ (·) is selected
as Shannon entropy, according to Cuturi (2013) using the softmin operator, the optimal potential
ϕ∗ (·) satisfy the following equation

ϕ∗ (ŷ) = −ε ln
[∫

Y
exp

(
ψ∗ (y)− C (ŷ, y)

ε

)
dy

]
(8)

Now, to estimate the Lipschitz of ϕ∗, we have to find the upper bound of ||∇ŷϕ
∗ (ŷ) ||. Hence,

taking the gradient of equation 8 with respect to ŷ, the upper-bound of its norm can be written as,

9
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||∇ŷϕ
∗ (ŷ) || =

||
∫
Y exp

(
ψ∗(y)−C(ŷ,y)

ε

)
∇ŷC (ŷ, y) dy||

||
∫
Y exp

(
ψ∗(y)−C(ŷ,y)

ε

)
dy||

(9)

Now due to Lipschitz continuity ofC (ŷ, y), we can say ∇ŷ||C (ŷ, y) || ≤ L0. Hence, using Cauchy-
Schwarz inequality we will get,

||∇ŷϕ
∗ (ŷ) || ≤ ||∇ŷC (ŷ, y) ||

||
∫
Y exp

(
ψ∗(y)−C(ŷ,y)

ε

)
dy||

||
∫
Y exp

(
ψ∗(y)−C(ŷ,y)

ε

)
dy||

= L0. (10)

This completes the proof of the lemma. An alternative proof is provided by Houdard et al. (2021) in
Proposition 4. Similarly, it can be proved for the other potential term.

For any θ1, θ2 ∈ Θ will result in different coupling solutions π∗
i , for i = 1, 2. Now, based on

Danskins’ theorem for optimal coupling π∗ (θ), we can write
∇θWC,ε (µθ, ν) = EGθ(x),y∼π∗(θ) [∇θC (Gθ (x) , y)] (11)

Therefore, for any θ1 and θ2, we can write,
||∇θWC,ε (µθ1 , ν)−∇θWC,ε (µθ2 , ν) || ≤
||EGθ1

(x),y∼π∗
1
[∇θC (Gθ1 (x) , y)]− EGθ1

(x),y∼π∗
2
[∇θC (Gθ1 (x) , y)] ||

+ ||EGθ1
(x),y∼π∗

2
[∇θC (Gθ1 (x) , y)]− EGθ2

(x),y∼π∗
2
[∇θC (Gθ2 (x) , y)] ||

≤ L0L||π∗
1 − π∗

2 ||+ L1L||θ1 − θ2||

(12)

Now with respect to different θi, for i = 1, 2 with different pair of dual potentials, the ||π∗
1 − π∗

2 ||
can be written as below. For simplicity we denote µθ ≡ µθ (Gθ (x)) and ν ≡ ν (y).

||π∗
1 − π∗

2 || = ||µθ1ν exp
(
ϕ∗ (Gθ1 (x)) + ψ∗ (y)− C (Gθ1 (x) , y)

ε

)
− µθ2ν exp

(
ϕ∗ (Gθ2 (x)) + ψ∗ (y)− C (Gθ2 (x) , y)

ε

)
||

≤ ||ν exp
(
ϕ∗ (Gθ1 (x)) + ψ∗ (y)− C (Gθ1 (x) , y)

ε

)
(µθ1 − µθ2) ||

+ ||µθ2ν
[
exp

(
ϕ∗ (Gθ1 (x)) + ψ∗ (y)− C (Gθ1 (x) , y)

ε

)
− exp

(
ϕ∗ (Gθ2 (x)) + ψ∗ (y)− C (Gθ2 (x) , y)

ε

)]
||

(13)

From Genevay et al. (2019), we know, as the dual potentials are L0-Lipschitz, ∀Gθ (x) ∈ X , we can
write, ϕ∗ (Gθ (x)) ≤ L0|Gθ (x) |. And from property of c-transform, for ∀y ∈ Y we can also write
ψ∗ (y) ≤ maxGθ(x) ϕ

∗ (Gθ (x)) − C (Gθ (x) , y). We assume X to be a bounded set in our case,
hence, denoting |X | as the diameter of the space, at optimality, we can get that ∀Gθ (x) ∈ X , y ∈ Y

⇒ ϕ∗ (Gθ (x)) + ψ∗ (y) ≤ 2L0|X |+ ||C||∞

⇒ exp

(
ϕ∗ (Gθ (x)) + ψ∗ (y)− C (Gθ (x) , y)

ε

)
) ≤ exp

(
2
L0|X |+ ||C||∞

ε

)
(14)

Hence, the exponential terms in equation 13 are bounded, and we can assume it has a finite Lipschitz
constant Lexp. Taking κ = 2 (L0|X |+ ||C||∞), and using Cauchy-Schwarz, we can rewrite
equation 13 as,

||π∗
1 − π∗

2 || ≤ exp
(κ
ε

)
||ν||.||µθ1 − µθ2 ||

+ Lexp||µθ2 ||.||ν||.||
(ϕ∗ (Gθ1 (x))− ϕ∗ (Gθ2 (x)))− (C (Gθ1 (x) , y)− C (Gθ2 (x) , y))

ε
||

≤ exp
(κ
ε

)
||ν||.||µθ1 − µθ2 ||+ 2

LexpL0L

ε
||µθ2 ||.||ν||.||θ1 − θ2||

(15)

10
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Now, as the input space X and output space Y are bounded, the corresponding measures µθ and ν
will also be bounded. We assume, ||µθ|| ≤ λ1 and ||ν|| ≤ λ2. If we apply equation 14 in equation 7,
to get the upper bound of the coupling function, we will get ||π∗

1 −π∗
2 || ≤ exp

(
κ
ε

)
||ν||.||µθ1 −µθ2 ||

which is less than the bound in equation 15. Then, we can find some constant upper bound of
||π∗

1 −π∗
2 ||, using the assumed bounds of measures and can write ||π∗

1 −π∗
2 || ≤ exp

(
κ
ε

)
||ν||.||µθ1 −

µθ2 || ≤ K, such that,

K ≤ exp
(κ
ε

)
||ν||.||µθ1 − µθ2 ||+ 2

LexpL0L

ε
||µθ2 ||.||ν||.||θ1 − θ2||

Then using the marginal condition as shown in in equation 5, we can write equation 15 as,

K ≤ λ1 exp
(κ
ε

)
||
∫
X
π∗
1dx−

∫
X
π∗
2dx||+ 2λ1λ2

LexpL0L

ε
||θ1 − θ2||

≤ λ1 exp
(κ
ε

)∫
X
||π∗

1 − π∗
2 ||.|dx|+ 2λ1λ2

LexpL0L

ε
||θ1 − θ2||

≤ λ1 exp
(κ
ε

)
K

∫
X
|dx|+ 2λ1λ2

LexpL0L

ε
||θ1 − θ2||

(16)

The input set is a compact set such that X ⊂ Rd. So, assuming m and M to be the minimum and
maximum value in set X and considering the whole situation in discrete space, equation 16, can be
rewritten as,

K ≤ λ1 exp
(κ
ε

)
K
∑
x∈X

|x|+ 2λ1λ2
LexpL0L

ε
||θ1 − θ2||

≤ λ1 exp
(κ
ε

)
Kdmax (||M ||, |||m|) + 2λ1λ2

LexpL0L

ε
||θ1 − θ2||,

(17)

Now, taking B = dmax (||M ||, |||m|), and doing necessary subtraction and division on both sides
of equation 17, it can be rewritten as

K ≤ 2λ1λ2LexpL0L

ε
(
1− λ1B exp

(
κ
ε

)) ||θ1 − θ2||

≤ 2λ1λ2LexpL0L

ε
(
1 + λ1B exp

(
κ
ε

)) ||θ1 − θ2||
(18)

Equation 18, satisfies because κ
ε ≥ 0. As, ||π∗

1 − π∗
2 || ≤ K, from equation 18, it can be written as

||π∗
1 − π∗

2 || ≤
2λ1λ2LexpL0L

ε
(
1 + λ1B exp

(
κ
ε

)) ||θ1 − θ2|| (19)

Substituting equation 19 in equation 12, we will get,
||∇θWC,ε (µθ1 , ν)−∇θWC,ε (µθ2 , ν) || ≤ L0L||π∗

1 − π∗
2 ||+ L1L||θ1 − θ2||

≤

(
L1L+

2λ1λ2LexpL
2
0L

2

ε
(
1 + λ1B exp

(
κ
ε

))) ||θ1 − θ2||
(20)

So, the EOT problem defined in equation 5 has Γ̂ε smoothness in θ with Γ̂ε = L1L +
2λ1λ2LexpL

2
0L

2

ε(1+λ1B exp (κε ))
. From this, we can derive the smoothness of Sinkhorn loss defined in equation

1. Note that only the first two terms in equation 1 are θ dependent. Therefore, they only contribute
to the gradient approximation and both of them will satisfy the same smoothness condition as defined
in equation 20. So, if Sinkhorn loss has smoothness Γε, it will satisfy, Γε = 3

2 Γ̂ε. In general, we
can define the smoothness of Sinkhorn loss with (θ1, θ2) ∈ Θ as,

||∇θSC,ε (µθ1 , ν)−∇θSC,ε (µθ2 , ν) || ≤ O

(
L1L+

2L2
0L

2

ε
(
1 +B exp

(
κ
ε

))) ||θ1 − θ2|| (21)

This completes the statement of Theorem 1

B APPENDIX: UPPER-BOUND OF EXPECTED GRADIENT IN SIRAN SET-UP

Theorem 2. Let l(·), g(·) and SC,ε(·) be the objective functions related to supervised losses,
adversarial loss and Sinkhorn loss respectively, and θ∗ and ψ∗ be the parameters of optimal

11
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generator G and discriminator D. Let us suppose l(p, y), where p = Gθ(x), is β-smooth in p.
If ||θ− θ∗|| ≤ ϵ and ||ψ−ψ∗|| ≤ δ, then ||∇θE(x,y)∼X×Y [l(Gθ(x), y)+SC,ε(µθ(Gθ(x)), ν(y))−
g(ψ;Gθ(x))]|| ≤ L2ϵ(β+Γε)+Lδ, where Γε is the derived smoothness of Sinkhorn loss in equation
4.

Proof. This proof is inspired by Rout (2020). Assuming Γ = O
(
L1 +

2L2
0

ε(1+B exp (κε ))

)
be the

smoothness in p for Sinkhorn loss SC,ε (µθ (p) , ν (y)), where p = Gθ (x). For simplicity, we use a
common set for inputs and outputs as P . Hence, to approximate the gradient of Sinkhorn loss, using
Jensen’s inequality, we can write,

||∇θE(x,y)∼P [SC,ε (µθ (Gθ (x)) , ν (y))]||
≤ E(x,y)∼P [||∇θSC,ε (µθ (Gθ (x)) , ν (y)) ||]

≤ E(x,y)∼P

||∇pSC,ε (µθ (p) , ν (y)) ||.||∇θGθ (x) ||︸ ︷︷ ︸
Cauchy-Schwarz inequality


≤ LE(x,y)∼P [||∇pSC,ε (µθ (p) , ν (y)) ||]

(22)

Say, for optimized parameter θ∗, t = Gθ∗(x). Since, ||θ − θ∗||, we can write using the smoothness
of sinkhorn loss and Lipschitz of model parameters,

||∇pSC,ε (µθ (p) , ν (y)) || − ||∇tSC,ε (µθ∗ (t) , ν (y)) ||
≤ ||∇pSC,ε (µθ (p) , ν (y))−∇tSC,ε (µθ∗ (t) , ν (y)) ||
≤ Γ||p− t|| = Γ||G(θ)(x)−G(θ∗(x))||
≤ ΓL||θ − θ∗|| ≤ ΓLϵ

(23)

At optimal condition, ||∇tSC,ε (µθ∗ (t) , ν (y)) || = 0 as the distributions of y and t = Gθ∗(x) are
aligned for optimal θ∗. So, by substituting equation 23 in equation 22, we will get

||∇θE(x,y)∼P [SC,ε (µθ (Gθ (x)) , ν (y))] || ≤ L2Γϵ (24)
From Lemma 1 of Rout (2020), we get,

||∇θE(x,y)∼P [l(Gθ(x), y)] || ≤ L2βϵ (25)
Similarly, from Lemma 2 of Rout (2020), we get

|| − ∇θE(x,y)∼P [g(ψ;Gθ(x))] || ≤ Lδ (26)
Here, ψ is parameters of discriminator D. So using equations 24, 25, and 26, for the combination of
losses we will get,

||∇θE(x,y)∼P [l(Gθ(x), y) + SC,ε (µθ (Gθ (x)) , ν (y))

− g(ψ;Gθ(x))]|| ≤ ||∇θE(x,y)∼P [l(Gθ(x), y)] ||
+ ||∇θE(x,y)∼P [SC,ε (µθ (Gθ (x)) , ν (y))] ||
+ || − ∇θE(x,y)∼P [g(ψ;Gθ(x))] ||
≤ L2βϵ+ L2Γϵ+ Lδ = L2ϵ(β + Γ) + Lδ

(27)

This completes the proof.

In a regular adversarial set-ups like WGAN and their variants ϵ → 0 suggests reductions of δ,
which eventually results in a vanishing gradient near the optimal region as shown by Rout (2020).
However, in our Sinkhorn regularized adversarial framework, the upper bound is also dependent
on Γε as exhibited in Theorem2. From equation 4, Γε is exponentially variable with respect to
the choice of ε. Hence, the selection of adequate ε will have a profound impact in mitigating the
vanishing gradient problem suffered by regular adversarial setup. Experimental results to support
this claim is shown in §G.

C APPENDIX: ITERATION COMPLEXIETY OF SIRAN

Theorem 3. Suppose the supervised loss l(θ) is lower bounded by l∗ > −∞ and it is twice
differentiable. For some arbitrarily small ζ > 0, η > 0 and ϵ1−stationary point with ϵ1 > 0,

12
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let ||∇g(ψ;Gθ(x))|| ≥ ζ, ||∇SC,ε(µθ(Gθ(x)), ν(y))|| ≥ η and ||∇l(Gθ(x), y)|| ≥ ϵ1, with
conditions δ ≤

√
2ϵ1ζ
L , and Γε <

√
2ϵ1η
L2ϵ , then the iteration complexity in Sinkhorn regularized

adversarial framework is upper bounded by O( (l(θ0)−l∗)β1

ϵ21+2ϵ1(ζ+η)−L2(δ2+L2Γ2
εϵ

2)
), assuming ||∇2l(θ)|| ≤

β1.

Proof. This proof also follows the steps of Theorem 3 from Rout (2020). In the sinkhorn regularized
adversarial setup, the parameters θ are updated using fixed step gradient descent. They iterate as,

θt+1 = θt − ht∇(l(θt) + SC,ε (µθt (Gθt (x)) , ν (y))− g(ψ;Gθt(x))). (28)
For simplicity, we denote SC,ε (µθt (Gθt (x)) , ν (y)) ≡ SC,ε(µθt , ν). Using Taylor’s expansion,

l(θt+1) = l(θt) +∇l(θt)(θt+1 − θt) +
1

2
(θt+1 − θt)

T∇2l(θt)(θt+1 − θt) (29)

Now, substituting θt+1 − θt from equation 28, and using triangle inequality and Cauchy-Schwarz
inequality, equation 29 can be rewritten as,
l(θt+1) ≤l(θt)− ht||∇l(θt)||2− ht||∇l(θt)||.||∇SC,ε(µθt , ν)|| − ht||∇l(θt)||.||g(ψ;Gθt(x))||

+ h2t ||∇(l(θt) + SC,ε(µθt , ν)− g(ψ;Gθt(x)))||2
||∇2l(θt)||

2
.

(30)
Taking into account the assumptions in Theorem 3 and utilizing Minkowski’s inequality, equation
30 can be rewritten as,

l(θt+1) ≤l(θt)− ht||∇l(θt)||2 − ht||∇l(θt)||η − ht||∇l(θt)||ζ

+ h2t (||∇(l(θt)||2 + ||SC,ε(µθt , ν)||2 + ||g(ψ;Gθt(x)))||2)
β1
2
.

(31)

Using ht = 1
β1

, from equation 31, we can write,

l(θt+1) ≤ l(θt)−
ht||∇l(θt)||2

2
− ht||∇l(θt)||η − ht||∇l(θt)||ζ

+
ht||SC,ε(µθt , ν)||2

2
+
ht||g(ψ;Gθt(x)))||2

2

≤ l(θt)−
htϵ

2
1

2
− htϵ1η − htϵ1ζ +

htL
4Γ2ϵ2

2
+
htL

2δ2

2
.

(32)

Assuming T iterations to reach this ϵ1-stationary point, then for t ≤ T , doing telescopic sum over t,
T−1∑
t=0

l(θt+1)−l(θt) ≤
−T (ϵ21 + 2ϵ1(ζ + η)− L2(δ2 + L2Γ2ϵ2))

2β1

⇒ T ≤ 2(l(θ0)− l∗)β1
(ϵ21 + 2ϵ1(ζ + η)− L2(δ2 + L2Γ2ϵ2))

(33)

Therefore, using the iteration complexity definition of Rout (2020), we obtain,

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tϵ1(Ah[l, θ0], l) = O
(

(l(θ0)− l∗)β1
ϵ21 + 2ϵ1(ζ + η)− L2(δ2 + L2Γ2

εϵ
2)

)
. (34)

This completes the proof of Theorem 3.

C.1 SIMPLIFIED THEOREM 3

Corollary 1. Using first order Taylor series, the upper bound in Theorem 3 becomes
O( l(θ0)−l∗

ϵ21+ϵ1(ζ+η)
).

Using the similar arguments of Theorem 3, and taking first-order Taylor’s approximation, we get
l(θt+1) = l(θt)− ht||∇l(θt)||2 − ht||∇l(θt)||.||∇SC,ε(µθt , ν)|| − ht||∇l(θt)||.||g(ψ;Gθt(x))||

≤ l(θt)− htϵ
2
1 − htϵ1η − htϵ1ζ

(35)

13
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Taking telescopic sum over t for t ≤ T , we get
T−1∑
t=0

l(θt+1)− l(θt) ≤ −Tht(ϵ21 + ϵ1(ζ + η)) (36)

So, using the definition of iteration complexity, we get,

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tϵ1(Ah[l, θ0], l) = O
(

l(θ0)− l∗

ϵ21 + ϵ1(ζ + η)

)
(37)

This completes the proof.

Since the denominator of the derived upper bound in Theorem 3 is greater than the one mentioned in
Theorem 3 by Rout (2020), we can infer that our proposed learning framework has tighter iteration
complexity compared to the regular adversarial setup. This is only true when Γε <

√
2ϵ1η
L2ϵ , and it can

be easily satisfied by appropriate choice of ε. It can also be verified using a simpler setup as shown
in Corollary 1, as it increases the convergence rate from O((ϵ21 + ϵ1ζ)

−1) (Rout, 2020) to O((ϵ21 +
ϵ1(ζ + η))−1) which effects considerably in the training iterations. This also suggests that our setup
is equivalent to applying two discriminator operations without involving additional computations
which helps in effectively leveraging the advantage of using multiple discriminators (Durugkar et al.,
2016). Experiment result to support this proposed theorem is carried out in Appendix §G.

D APPENDIX: DETAILS OF USED LOSSES

Besides classification, discriminator D has another major functional branch, (DSA), to approximate
the spatial attention maps. For any input m, DSA is used to estimate its corresponding normalized
spatial feature maps, DSA : RH×W → [0, 1]H×W . Let D consists of k DMRBs and ai be the
activation maps after ith DMRB with c output channels, such that ai ∈ RH×W×c. Since at different
depths, the discriminator focuses on different features, we select k different attention maps from the
layers in the latent space. Eventually, attention coefficients are calculated as in Emami et al. (2019):

DSA(m) =

k∑
i=1

c∑
j=1

|aij(m)| (38)

Then the domain adaptation loss (LDA) mentioned in §2.2,is defined as,

LDA = Ex̃∼Px̃,y∼Py

[
∥DSA(x̃)−DSA(y)∥22

]
. (39)

where, y is ground truth DEM and x̃ is bicubic interpolated coarse SRTM DEM as mentioned in §2.
The pixel loss (LP ) and SSIM loss (Lstr) and adversarial loss (LADV ) are defined as,

LP = Ex̃∼Px̃,z∼PZ ,y∼Py

[
∥y −G(x̃, z ⊙As(x̃))∥22

]
,

Lstr = Ex̃∼Px̃,z∼PZ ,y∼Py − log(SSIM(G(x̃, z ⊙As(x̃)), y)),

LADV = Ex̃∼Px̃,z∼PZ − log(D(G(x̃, z ⊙As(x̃)))).

(40)

where, As(x̃) = PSA(DSA(x̃)) with PSA being polarized self-attention as discussed in §2

E APPENDIX: IMPLEMENTATION DETAILS

Every experiment is conducted under identical environments. We use 3× 3 convolution kernel and
leaky ReLU activation except in global skip connection where 1×1 kernel is used without activation.
Each DMRB has 64 convolution operations. We use ADAM optimizer with a fixed learning rate of
0.0001. During adversarial training, we update the critic once every single update in the generator.
We set λDA = 0.1, λP = 100, λstr = 1, λADV = 1 and λOT = 0.01. For estimating LOT , we set
T = 10 and ε = 0.1. The entire framework is developed using PyTorch

F APPENDIX: ABLATION STUDY

In this section, we analyze the efficacy of our four proposed modules, image prior, spatial attention
from discriminator, PSA, and Sinkhorn loss-based adversarial learning. In the absence of any prior,
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Table 2: Quantitative analysis for the effect of introducing different modules for DEM super-
resolution

Image
Prior

Spatial
Attention PSA Sinkhorn

loss RMSE (m) MAE (m) SSIM (%) PSNR

✗ ✗ ✗ ✗ 16.54 13.63 72.27 30.25
✓ ✗ ✗ ✗ 29.32 25.41 78.29 28.25
✓ ✓ ✗ ✗ 20.76 18.29 81.68 31.08
✓ ✓ ✓ ✗ 18.76 15.13 85.04 32.21
✓ ✓ ✓ ✓ 9.28 8.51 90.49 35.06

it leads to outcomes similar to bicubic interpolation. This results in low RMSE and MAE, compared
to other cases as shown in Table 2. However, that affects its SSIM score as shown in Table 2. Using
high-resolution MX image priors resolves this issue to a certain extent by increasing SSIM by more
than 6%. Yet, this degrades the performance of the model in terms of RMSE and MAE. To improve
upon this situation, we introduce spatial feature maps from the discriminator. Figure 5 shows how
individual attention maps after each DMRB prioritizes certain features at different labels. However,
the mean attention weights are approximately uniform as shown in Figure 6. PSA handles this matter
by emphasizing key features. Addressing both these attentions improves the RMSE and MAE by
more than 50% as well as enhances SSIM by almost 7% as shown in Table 2. The introduction
of Sinkhorn distance regularization enhances the evaluation parameters further with both MAE and
RMSE below 10 m and SSIM more than 90% as shown in Table 2. Apart from this, sinkhorn loss
also contributed to a near 2.5X faster convergence rate for the pixel loss as shown in Figure 7. This
also supports our argument in Theorem 3. We also perform ablation study related to different

0

1

Figure 5: (a) Source, (b) Target, (c)-(h)
Discriminator spatial attention after each
DMRB from top to bottom.

0

1(b)(a)

Figure 6: (a) Weights of mean discriminator
spatial attention (DSA), (b) weights after
passing DSA through PSA block)

Figure 7: Effect of sinkhorn loss in training
convergence for our model

loss functions as shown in Table 3. This can also be visualized from 8. Clearly, introduction of
Sinkhorn loss is pivotal in SR performance (3 dB gain). Other losses also contribute to the overall
performance.
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Table 3: Quantitative analysis on the effect of different losses
Pixel loss SSIM loss Adversarial Loss Sinkhorn loss RMSE (m) MAE (m) SSIM (%) PSNR

✓ ✗ ✗ ✗ 20.68 19.03 74.43 31.07
✓ ✓ ✗ ✗ 25.76 22.83 81.55 31.41
✓ ✓ ✓ ✗ 18.76 15.13 85.04 32.21
✓ ✓ ✓ ✓ 9.28 8.51 90.49 35.06

Figure 8: (a) Bicubic LR DEM, (b) HR GT DEM, predicted HR DEM corresponding to (c) all
losses, (d) pixel + SSIM + adversarial loss, (e) pixel + SSIM loss, and (f) only pixel loss.

G APPENDIX: EMPIRICAL RESULTS RELATED TO THEOREM 2 AND
THEOREM 3

We perform experiments to answer the proposed claims. There are two main aspects we want
to investigate, firstly, how the choice of ε affects the overall training of the model, and secondly,
how it performs compared to other state-of-the-art learning methods like WGAN, WGAN+GP, and
DCGAN. In both these cases, we analyze the claims of mitigating vanishing gradients in the near-
optimal region and fast convergence rate.

G.1 EXPERIMENT SET-UP

In this setting, we are performing a denoising operation on the MNIST dataset. For this 60000
samples of size 28× 28 are used during training, while 10000 are used for testing. The convergence
criterion is set to be the mean square error of 0.04 or a maximum of 500 epochs. During training, we
randomly add Gaussian noise to the training samples to perform the denoising task. The generator is
designed as a simple autoencoder structure with an encoder and decoder each having 2 convolutional
layers. In practice, we notice that a discriminator with shallow layers is usually sufficient to offer
a higher convergence rate. Therefore, we choose, a three-layer fully connected network with 1024
and 256 hidden neurons. All the layers are followed by ReLu activation except the output layer.
For optimization, ADAM is utilized with a learning rate of 0.001 with a batch size of 64, and the
discriminator is updated once for every single update of the generator.

G.2 RESULT ANALYSIS

Figure 9, shows how changing the value of ε affects the overall iteration complexity. According to
this figure, the instances ε are very small and very large, and the learning behavior of the model
becomes close to regular adversarial setup which ultimately results in more time requirement for
convergence. This is because, as ε → 0 and ε → ∞, the smoothness of sinkhorn loss tends to
become independent of ε as depicted in Theorem 1, which makes the overall setup similar to the
regular adversarial framework. This also affects the capability of mitigating the vanishing gradient
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problem as shown in Figure 10 and 11. The gradients are approximated using spectral norm and
they are moving averaged for better visualization. From Figure 10, in the case of the first layer, as
ε varies, the estimated gradients are similar near the optimal region. However, From Figure 11, we
can see for the case of the hidden layer, gradient approximation is definitely affected by the choice
of ε, and we can see as ε → 0 and ε → ∞, the gradients near-optimal region become smaller.
However, using ε = 0.1 tends to have higher gradients even if near the optimal region. Therefore,
this model will have more capability of mitigating the vanishing gradient problem. Hence, we use
this model to compare with other state-of-the-art learning methods.

We compare the rate of convergence and capability of handling the vanishing gradient of SIRAN
with WGAN (Arjovsky et al., 2017), WGAN+GP (Gulrajani et al., 2017), and DCGAN. Figure
12 clearly visualizes how our proposed framework has tighter iteration complexity than others, and
reaches the convergence faster. This is consistent with the theoretical analysis presented in Theorem
3. Figure 13 and 14 also provides empirical evidence of the vanishing gradient issue presented in
Theorem 2. Both for the first layer and hidden layer, as shown in Figure 13 and 14, the approximated
gradients are higher comparatively than others near the optimal region. This results in increasing
the effectiveness of SIRAN in handling the issue of the vanishing gradient problem as discussed in
above theorems.

Figure 9: Training Loss for
variation of ε

Figure 10: Approximated
Spectral norm of gradients of
first layer for different values of
ε

Figure 11: Approximated
Spectral norm of gradients
of hidden layer for different
values of ε

Figure 12: Training Loss for
different learning methods

Figure 13: Approximated
Spectral norm of gradients of
first layer for different learning
methods

Figure 14: Approximated
Spectral norm of gradients
of hidden layer for different
learning methods
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