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ABSTRACT

We yearn for a connection with nature and a sense of refuge from our living
spaces, seeking solace in the views from our windows at home. Despite these
inclinations, existing window view indices are often time-consuming to collect
and over-simplified in their construction. The limited research can be attributed
to the lack of data and computational methods for analyzing vistas from proper-
ties. To address this gap, this study proposed a novel data collection and resam-
pling procedure that leverages the newly accessible photo-realistic 3D modelled
imagery from Google Maps, along with existing machine learning techniques, to
improve housing price/rent prediction and to establish a novel window view index
for automatically assessing the appeal of views at home.

1 INTRODUCTION

Extensive research has been conducted in environmental psychology that points to the benefits of
high-quality views which are mentally restorative and provide opportunities for outlook, refuge,
and solace (Kaplan, 1995; Appleton, 1984). This is reflected in differences of premiums paid for
a flat with a better view (Baranzini & Schaerer, 2011) and the effects urban view quality has on
depression symptoms (Helbich et al., 2019). Empirical evidence also demonstrates that more scenic
views are associated with individual happiness (Seresinhe et al., 2019). An abundance of urban
view indices have been proposed including ones using remotely sensed data such as the Normalised
Difference Vegetation Index or more recently street view-derived visual desirability indicators (Law
et al., 2019), visual walkability indicators (Zhou et al., 2019), and skyview factors (Liu et al., 2017).
The majority of these indicators are either from overhead aerial views or at the street level using
simple semantic attributes and often do not consider the complex 3D environment from a residential
window view. While existing window view indices are either time-consuming to collect or over-
simplified in their construction, the lack of enriched window view indices can be attributed to the
shortage of both data and computational methods for analyzing the vistas from residential properties.
To bridge this research gap, this study will introduce a novel data collection pipeline in making use of
the newly available photo-realistic 3D-modelled imagery from Google Maps, coupled with existing
machine learning and vision techniques to tackle the following aims;

• First, to introduce a novel data collection and resampling procedure in retrieving window
views in Tokyo, Japan.
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• Second, to explore how the views from homes can enhance the accuracy of housing rents
prediction beyond simple semantic and depth features, testing a series of pretrained and
newly trained vision backbones.

• Third, to propose an innovative window view metric extending existing research, for as-
sessing the desirability of views from properties in Tokyo, Japan.

2 RELATED WORKS

2.1 WINDOW VIEW QUALITY

Window view quality is commonly assessed by both subjective and objective methods. The former
often uses stated preference methods where participants would provide a subjective judgment on
views (assess or rank) which often tend to be smaller in scale (Lottrup et al., 2015). The latter utilises
objective measurements including 3D visibility analysis and image analysis using machine learning
methods. As an illustration, Li et al. (2021) used a transfer learning approach to categorise a window
photograph view as either nature or construction. In a subsequent study, Li et al. (2022) employed
a 3D photo-realistic City Informational Model (CIM) alongside a fine-tuned semantic segmentation
model to quantify a window view index, encompassing factors such as greenery, sky, construction,
and water bodies. However, previous research; i. was only able to retrieve a small number of window
views from custom-designed CIM models, and ii. used semantic attributes which might not capture
more holistic image features from a window scene such as the overall composition and the skyline.

2.2 VISUAL DESIRABILITY FROM PRICES

Previous research has demonstrated the association between visual attributes derived from urban im-
ages, socioeconomic profiles (Gebru et al., 2017), perceived safety (Naik et al., 2014) and individual
happiness (Seresinhe et al., 2019). In particular, we have seen the increasing use of urban imagery
to estimate house price/rent in urban economics. For instance, Ahmed & Moustafa (2016) supple-
mented traditional housing features with visual features extracted from property photos to estimate
house prices. However, these studies primarily focused on predictive accuracy rather than inter-
pretability. In contrast, Law et al. (2019) proposed a semi-interpretable hedonic price model aimed
at assessing the visual appeal of London’s street views based on housing prices. This study will
adopt a similar approach to forecast housing rental values in Tokyo and propose a novel window-
view desirability index that can be automatically mapped using 3D modeling imagery data from
Google Maps.

3 METHOD AND MATERIALS

3.1 ARCHITECTURE

Adopting the architecture introduced by Law et al. (2019), we present a two-stage pipeline illustrated
in Figure 1 for forecasting Tokyo property rental rates. In the first stage, we employ a conventional
hedonic regression model, denoted as F (X; θ) parameterised by θ, which maps housing characteris-
tics X to rental prices Y . These typical housing attributes encompass the property’s size, proximity
to the nearest rail station, passenger traffic at the nearest rail station, the property’s construction
year, and the building’s height. We minimise the mean squared error loss function L(θ) between
the predicted and the observed rent with added l2 regularisation on the regression model’s weights.
More formally, L(θ) = 1

n

∑N
i=1

(
yi − F (xi; θ))

)2
+ λ ∥θ∥2.

In the second stage, we begin by extracting deep image features S from the modelled imagery I
using different pretrained/trained vision backbone models V (·). We then learn a second regression
model, denoted as G(S; θ[s]) parameterised by θ[s] that takes the deep image features S to predict
the difference W = Y − Ŷ from the first stage to infer a window-view index Ŵ . Similar to the
first stage, we minimise the mean squared error loss function L(θ[s]) with added l2 regularisation on
the regression model’s weights. The losses are optimized in the learning process using an ADAM
optimiser with a learning rate of 0.01 for 5000 epochs.
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3.2 VISION BACKBONES

A number of vision backbones V (·) have been tested. This includes; i. Vision Transformer (Doso-
vitskiy et al., 2021), a state-of-the-art self-attention vision transformer encoder pretrained on Ima-
geNet, ii. Clip (Radford et al., 2021), a Contrastive Vision-Language foundation model pretrained
on CoCo dataset, iii. Street2Vec (Stalder et al., 2023), a self-supervised vision model that was
trained on pairs of time series street view images in London, following the non-contrastive Barlow
Twins learning objective (Zbontar et al., 2021), iv. SatlasPretrain Bastani et al. (2023), an aerial
image foundational model pretrained on high-resolution NAIP. As an additional baseline, v. we
combine the frequencies of urban semantic classes extracted from Segformer (Xie et al., 2021) pre-
trained from the ADE20k dataset and statistics from the depth maps. Finally, vi. we also train two
simple Encoder-Decoder models (five Conv − BatchNorm − Maxpool encoder blocks and five
ConvT − BatchNorm − UnMaxpool decoder blocks) on the synthetic modelled imagery. The
first model contains only the coloured imagery (RGB) and the second contains both coloured and
depth information (RGBD).

Figure 1: Pipeline for predicting Tokyo’s window view scores.

3.3 MATERIALS AND DATA COLLECTION PIPELINE

Below is a concise overview and description of the data collection pipeline and the three sources of
data used, namely; i. the Lifull property dataset, ii. the Plateau building dataset and iii. the Google
3D model imagery dataset. Figure 2a shows the data collection pipeline. We first retrieve Tokyo’s
(23 wards) rental data from the Lifull property dataset between 07-2015 and 06-2017 1. The dataset
contains property rents, locations, and the attributes used for the regression model (size, distance to
railway station, station passenger volume, station accessibility and the height of building). Next, we
merged the Lifull property dataset with the Plateau building dataset 2 which contains 3D information
on the floor and orientation of each flat. When processing the building data, we generated points
along the building’s perimeter at 5-meter intervals. These points were then extended vertically for
each floor to capture views of all properties. Subsequently, we filtered these views based on matching
floor levels and unit orientations, resulting in a viewpoint dataset that contains the view parameters
ci = [loni, lati, heighti, headingi] specific to each property. This dataset was utilized as input
for Google Maps photorealistic 3D tiles application programming interface 3 via the Cesium plugin
within Unity to generate high-resolution coloured and depth imagery based on the window views of
each property. The camera angle of view is configured with a focal length of 24mm, and the light
source is set to a default of 55 degrees with shadows turned off. The processed dataset has been
cleaned and comprises 124,476 3Bedroom rental transactions4. The output variable, representing
property rents, has been log-transformed for the analysis.

1https://www.nii.ac.jp/dsc/idr/en/lifull/
2https://www.geospatial.jp/ckan/dataset/plateau-tokyo23ku
3https://developers.google.com/maps/documentation/tile/3d-tiles
43BR market has been selected due to computation efficiency and being a popular housing type for family.
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3.4 RESAMPLING AND TRAINING PROCEDURE

In our experiment, we avoided random data splitting because views from the same building could be
very similar, which could lead to data leakage between the train and test sets. To address this issue,
we developed a novel building resampling approach where we divided the buildings into a 80-20
train and test set. To achieve this split, we needed to identify a group of buildings with a sample size
that met this requirement. We treated the resampling as a linear programming problem to ensure an
even division of buildings as shown in figure 2b is achieved.

(a) A novel data collection pipeline that leverages on the Lifull property
dataset, plateau building dataset and google 3D model imagery to retrieve
both the window view and depth imagery for Tokyo rental properties.

(b) To avoid potential data linkage,
we proposed a building-level train-
test set split.

Figure 2: Novel data collection pipeline and resampling procedures.

4 RESULTS

We estimated a simple linear hedonic model as a baseline, incorporating standard housing attributes
(R2=62.0% and rmse=0.202) and then nine other regression models building on top of the base-
line one (refer to Table 1). The base + SegDepth model, which adds urban semantic classes and
depth information from the window views, showed improvements compared to the baseline model
(R2 =65.0% and rmse= 0.194). Similarly, the base + vit model, which uses the Vision Trans-
former encoder, also showed improvements over the baseline model (R2=65.1% and rmse=0.194).
As ablations, we ran two additional vit models (vit128 and vit256), both trained with a reduced
dimension principal components model. The out-of-sample R2 and rmse exhibit only minor differ-
ences, with an R2 of 66.3% and rmse of 0.191. We then tested BarlowSV , a Barlow Twins-based
non-contrastive self-supervised learning model, pretrained on time series of street images. Its per-
formance was slightly worse than that of the Vision Transformer but still surpassed the baseline
model, yielding an out-of-sample R2 of 64.1% and rmse of 0.197. Following this, we tested a
CLIP contrastive learning model, pretrained on CoCo dataset, achieving an out-of-sample R2 of
67.2% and rmse of 0.189. We also tested a SatlasPretrain foundation model with reduced dimen-
sions Satlas128 achieving an out-of-sample R2 of 66.9% and a rmse of 0.191. Finally, we tested
two simple Encoder-Decoder models, one trained on the modelled coloured imagery (RGB) which
boosted the out-of-sample R2 and rmse to 70% and 0.180, and the other trained on both modelled
coloured and depth imagery (RGBD) which further boosted the R2 and rmse to 70.7% and 0.178.
These results show the use of simple segmentation features and pretrained vision models on natural
images are not as performant for predicting rents involving synthetic data. As a result, we will use
our trained base+ EncDecRGBD for interpretations and inferring the new window view index.

To interpret the results, we visualised the Tokyo Window View Index WVI geographically. The new
WVI map of Tokyo shows that the neighbourhoods in the southwest with views towards Tokyo Bay
have a higher window view desirability, while the neighbourhoods to the east of Arakawa River have
lower window view desirability. Furthermore, we visualised a sample of images with higher WVI
to the left of the map and lower WVI to the right of the map. The findings indicate that views with
higher WVI scores offer more expansive vistas of the skyline from higher floors, whereas views with
lower WVI scores present more confined perspectives, such as those overlooking buildings and car
parks.
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Table 1: building out of sample testset results.

model r2 mse
base 0.620 0.202
base+ SegDepth 0.650 0.194
base+ vit 0.651 0.194
base+ vit128 0.663 0.191
base+ vit256 0.663 0.190
base+ Clip 0.672 0.189
base+BarlowSV 0.641 0.197
base+ Satlas128 0.669 0.189
base+ EncDecRGB 0.700 0.180
base+ EncDecRGBD 0.707 0.178

Figure 3: Tokyo new Window View Index

5 DISCUSSION

In summary, this research introduces a novel data collection pipeline that uses newly accessible 3D-
modelled imagery data from Google Maps and applied existing machine vision models to enhance
the predictive accuracy of housing rent forecasts and in deriving a window view index WVI. This
novel holistic index goes beyond the mere semantics of the window scene, providing insights into
the quality of city views automatically. The results indicate that people generally prefer higher floors
with expansive views overlooking the Tokyo Bay area, than lower floors with shallower views over-
looking buildings. These findings underscore the need to improve the quality of window views for
properties located on lower ground floors in Tokyo possibly through the incorporation of on-street
greenery and art. Several limitations remain. Most importantly, the WVI needs to be validated and
examined carefully through human subject surveys. This validation process can help determine the
reliability of the machine-generated rating and its alignment with subjective assessments. Secondly,
the image quality reduces significantly with close-up views. Verification with on-site window view
data might be necessary to alleviate this concern. Thirdly, further research is required to better
understand the composition of the scenes. For example, would people prefer architecturally com-
plex or simpler views? Given the opaque nature of deep image representations, the application of
explainability methods can help reveal patterns of what constitutes a favourable or less favourable
view (Law et al., 2023). Lastly, the inclusion of location information can further improve the pre-
dictive accuracy of the model (Mai et al., 2020; Rußwurm et al., 2023). Despite these limitations,
this research offers a new way to understand the city from the sky, demonstrating the usefulness of
3D-modelled imagery data and machine learning. Such research affords valuable insights for hous-
ing and urban design policymakers, helping them grasp the importance of window views in design
and identify geographic areas that would need enhancement.
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