
ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

RED TEAMING MODELS FOR HYPERSPECTRAL IMAGE
ANALYSIS USING EXPLAINABLE AI

Vladimir Zaigrajew
1

Hubert Baniecki
1,2

Lukasz Tulczyjew
3,4

Agata M. Wijata
3,4

Jakub Nalepa
3,4

Nicolas Longépé
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ABSTRACT

Remote sensing (RS) applications in the space domain demand machine learning
(ML) models that are reliable, robust, and quality-assured, making red teaming a
vital approach for identifying and exposing potential flaws and biases. Since both
fields advance independently, there is a notable gap in integrating red teaming
strategies into RS. This paper introduces a methodology for examining ML mod-
els operating on hyperspectral images within the HYPERVIEW challenge, focusing
on soil parameters’ estimation. We use post-hoc explanation methods from the Ex-
plainable AI (XAI) domain to critically assess the best performing model that won
the HYPERVIEW challenge and served as an inspiration for the model deployed on
board the INTUITION-1 hyperspectral mission. Our approach effectively red teams
the model by pinpointing and validating key shortcomings, constructing a model
that achieves comparable performance using just 1% of the input features and a
mere up to 5% performance loss. Additionally, we propose a novel way of visual-
izing explanations that integrate domain-specific information about hyperspectral
bands (wavelengths) and data transformations to better suit interpreting models
for hyperspectral image analysis.

1 INTRODUCTION

Remotely-sensed hyperspectral imaging presents significant opportunities in Earth observation, of-
fering an extensive amount of data and potential for global scalability (Wijata et al., 2023). Hyper-
spectral images (HSIs) capture numerous spectral bands, providing detailed insights about scanned
objects. In precision agriculture, HSIs are crucial for extracting various soil parameters, enabling
non-invasive, large-scale monitoring to enhance agricultural practices (Nalepa et al., 2022). How-
ever, deploying machine learning (ML) models for these tasks faces challenges in creating diverse,
high-quality datasets, often constrained by time, cost, and human error. The HYPERVIEW : “See-
ing beyond the visible” challenge, with its carefully curated dataset, aimed to address these issues
by developing models to retrieve soil parameters from HSIs. Attracting substantial participation
(160 registered teams, with ca. 50 actively participating) from the research community (Nalepa
et al., 2022), the challenge resulted in a high-performing ML model. The winning solution was set
for deployment on the INTUITION-1 satellite. However, before its deployment on the INTUITION-
1 satellite, the winning challenge solution had to undergo a thorough performance evaluation.

This important deployment phase reflects the wider industry trend of continuous model improve-
ment, where the use of various red teaming strategies is essential. These strategies aim to uncover
flaws and biases across diverse model families such as large language models (Perez et al., 2022;
Ganguli et al., 2022), text-to-image models (Mehrabi et al., 2023), and diffusion models (Rando
et al., 2022). In parallel, stakeholders in remote sensing (RS) call for higher explainability stan-
dards (Roscher et al., 2020a; Gevaert, 2022) as explainable AI (XAI) methods have shown to be
useful in many other practical applications (Roscher et al., 2020b). Therefore, several works (Singh
et al., 2022; Turan et al., 2023; Dantas et al., 2023; Emam et al., 2023b; Ekim & Schmitt, 2023;
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Abbas et al., 2023) have emerged to explain models used in RS. However, only a few studies have
shown how applying XAI can pinpoint performance gaps in models (Emam et al., 2023a) or improve
predictions (De Lucia et al., 2022), effectively aligning XAI with red teaming strategies. Our work
aims to advance this integration, focusing specifically on models from the HYPERVIEW challenge
designed for estimating soil parameters. We adapt post-hoc explanations to the specific domain and
use existing knowledge about the model to generate more sophisticated explanatory visualizations,
which are used to successfully red team the model.

Contribution. Our key contributions are: (1) We demonstrate how, by using SHapley Additive
exPlanations (SHAP), we were able to conduct an in-depth analysis of the EAGLEEYES model (Kuzu
et al., 2022) within the HYPERVIEW challenge, laying the groundwork for unraveling shortcomings
in model performance. (2) We present a novel way of visualizing explanations that integrate domain-
specific information about hyperspectral bands and data transformations, aimed at boosting the red
teaming of hyperspectral image analysis models. (3) The result, aimed at red teaming the model,
was the development of a model pruning technique focused on feature selection. This method, based
on SHAP, yielded a more efficient model without compromising its regression performance.

2 METHODOLOGY

2.1 SHAPLEY VALUES AS A MODEL AGNOSTIC TOOL FOR KNOWLEDGE EXTRACTION

Shapley values for predictive models (Robnik-Šikonja & Kononenko, 2008; Lundberg & Lee, 2017)
are one of the most popular XAI methods (Holzinger et al., 2022). This well-deserved popularity
is due to such properties as model agnosticity (they can be calculated for any model structure),
additivity (so that the contribution of a group of features is the sum of the contributions of the
features in that group), the availability of efficient implementations (e.g., TreeSHAP for tree-based
models (Lundberg et al., 2020)), and the possibility of use in the process of model analysis (Biecek
& Burzykowski, 2021). For a detailed mathematical explanation, please refer to Appendix A.2.
Shapley values are initially computed locally for individual features and observations, but they can
also be aggregated to get the global importance of a selected variable, or attribution of a group of
features. In the following sections, we will aggregate features corresponding to the same spectral
band or the same data transformation method.

2.2 DATA AND MODELS

We work with the HYPERVIEW dataset and the winning HYPERVIEW model EAGLEEYES . The
dataset, acquired on March 3, 2021, using the HySpex VS-725 (Norsk Elektro Optikk AS) acqui-
sition system, consists of images from two SWIR-384 imagers and one VNIR-1800 imager aboard
the Piper PA-31 Navajo aircraft. After undergoing comprehensive preprocessing and calibration as
detailed by Nalepa et al. (2022), the images were aligned with in-situ soil parameter measurements
taken using the Mehlich 3 methodology. From each parcel, 12 soil samples were collected and
analyzed in the laboratory. This process provided single, weakly-labeled, per-image ground-truth
data for four key soil parameters: phosphorus (P), potassium, (K) magnesium (Mg) and soil acid-
ity (pH). Our study analyzes two dataset versions: HYPERVIEW with 150 bands (462–942 nm) and
INTUITION-1 with 192 bands (460–920 nm), matching the spectral characteristics of a hyperspectral
camera mounted on board Intuition-1, a 6U satellite (KP Labs, Poland). The EAGLEEYES model,
available at https://github.com/ridvansalihkuzu/hyperview_eagleeyes, was
provided with and without spatial features extracted and deployed over two aforementioned ver-
sions of the dataset. For detailed information on the dataset and model, refer to Appendix A.1.

2.3 MODEL PRUNING

ML models, particularly complex ones, require substantial computational resources for training and
inference. This is challenging for real-time processing and deployment on resource-constrained de-
vices like imaging satellites. Model pruning, a technique to reduce model size without affecting
performance, addresses this issue. It is widely used in both classic ML (Zhou & Mentch, 2023) and
deep learning (Cheng et al., 2023) to optimize models for specific tasks, including those in RS (Qi
et al., 2019; Guo et al., 2021; Zhou et al., 2018). However, traditional pruning methods often depend
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on time-consuming processes and can introduce constraints. Our approach utilizes explanations de-
rived from Shapley values for effective feature selection in model pruning. This method significantly
reduces the model’s size and computational demands while preserving its performance, resulting in
lighter and faster models suitable for edge devices.

3 EXPLANATORY MODEL ANALYSIS

In this section, we conduct a thorough analysis of the HYPERVIEW challenge, focusing on evaluating
the top-ranked model’s performance through Shapley values. Our goal is to identify and highlight
any shortcomings in these models, offering insights for enhancements in their ongoing deployment.
The initial analysis of the models and datasets is detailed in Appendix A.1. A critical finding was the
poor model performance, notably in consistently predicting 90% of values within a narrow range, as
seen in Figure 4. This led to significant mispredictions, especially for outliers in each soil parameter.

SHAP Our initial Shapley values analysis examined feature importance distribution across soil
parameters and model versions, with detailed visualizations in Appendix A.4. Figure 5 displays
the top features of the EAGLEEYES model and their importance in predicting each soil parameter.
Meanwhile, Figure 7 provides beeswarm plots for each version of the EAGLEEYES model in predict-
ing phosphorus, highlighting the top features and their impact on predictions as defined by Shapley
values. Key findings include the models relying on a limited set of features (less than 1% of the
total), likely causing their narrow prediction range. Each model version favors different features,
and as the number of features used increases, the focus shifts from the most influential ones, hinting
at possible underfitting and reinforcing the limited prediction range observed.

Figure 1: Variations in Shapley values in response to changing feature values in the EA-
GLEEYES model for phosphorus predictions, highlighting the most influential feature (left) and a
feature with lesser impact (right).

While popular feature importance methods provide similar insights, Shapley values offer a more de-
tailed analysis of how individual features and specific samples impact model predictions. Analyzing
SHAP’s dependency and beeswarm plots, we gain an understanding of the effects of individual fea-
ture value fluctuations on predictions. Figure 1 illustrates this in two parts: the left plot demonstrates
how Shapley values correlate with the most impactful feature in the EAGLEEYES model, peaking at
a value of 2 and then stabilizing, suggesting a limited utilization of feature values for even most im-
pactful features. The right plot, targeting a less influential feature, indicates the model’s bias towards
memorizing specific outliers, resulting in prediction variability around the established prediction
window. These observations support our hypothesis regarding the model’s constrained prediction
range, which primarily depends on key features for simplistic value estimation and incorporates
outlier memorization for adaptability within its prediction range.

Aggregation Analysis Shapley values, formatted as <n samples, features, class>,
enable aggregation into hyperspectral bands and data transformation groups. Figure 2 demon-
strates the significance of features, grouped by preprocessing transformations on the y-axis and
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wavelength (hyperspectral band) on the x-axis. This visualization aids in understanding model in-
terpretations within the spectral domain of HSIs, incorporating preprocessing transformations. No-
tably, this plot reveals that key features are distributed across various bands instead of being clustered
in specific areas. Aggregated transformation visualizations, detailed in Appendix A.5, offer more
informative insights. Figure 8 highlights that spectral gradient features significantly influence the
EAGLEEYES model’s predictions, unlike other transformations with minimal impact. Additionally,
models incorporating spatial data tend to rely more on spatial features for predictions, underscoring
their critical role in enhancing model performance.
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Figure 2: Detailed visualization of Shapley values, depicting the significance of various aggregated
feature transformation groups with their corresponding wavelengths aggregations on the x-axis.

Model Pruning In our concluding analysis, we assessed model performance using key features
identified through Shapley value analysis. Beeswarm and feature importance plots enabled the effi-
cient selection of a feature subset for the prediction of soil parameters. Table 1 shows that models
with a reduced number of input features reached Mean Absolute Error (MAE) scores comparable to
those using all features for each soil parameter. Models trained with spatial features presented chal-
lenges in selecting feature subsets for training. It was expected due to smoother feature importance
distribution. Nonetheless, pruned models with under 1% of features performed similarly to baseline
models, as a two-sample t-test confirmed, with minimal metric decline. This affirms our hypothesis
about the models’ dependency on a limited set of features for precise predictions.

Dataset F. selection P K Mg pH

HYPERVIEW
7 (1200) 22.6 48.4 31.3 0.206
3 (3) 23.3 (+3%) 48.7 (+1%) 32.6 (+4%) 0.213 (+4%)

INTUITION-1 7 (1490) 22.5 48.5 30.9 0.204
3 (3) 22.7 (+1%) 48.5 (0%) 32.5 (+5%) 0.214 (+5%)

HYPERVIEW (spatial) 7 (2400) 22.4 47.8 31.0 0.205
3 (5) 23.0 (+3%) 48.9 (+2%) 32.5 (+5%) 0.212 (+3%)

INTUITION-1 (spatial) 7 (3026) 22.3 47.8 31.1 0.204
3 (6) 23.2 (+4%) 50.1 (+5%) 32.4 (+4%) 0.209 (+2%)

Table 1: Comparison of model performance on the test dataset using MAE (#) for soil parameters
(P, K, Mg, pH). Evaluations cover two scenarios: trained on original features (7) and trained on
post-feature selection (3), noting the feature count, e.g., 3 of 1200 for HYPERVIEW .
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4 CONCLUSION

We developed an innovative red teaming methodology for hyperspectral image analysis models, fo-
cusing on SHAP to utilize explainability and apply assurance of robustness. Our method, employed
on the winning HYPERVIEW challenge model (EAGLEEYES ), uncovers and visualizes model fail-
ures and biases, offering advanced visualizations into hyperspectral bands and data transformation
aggregations. Notably, we found the EAGLEEYES model utilized less than 1% of available features,
leading us to create simpler but effective model alternatives. Our study marks a significant advance
in the application of red teaming using explainable AI to the hyperspectral imaging domain models.
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artificial intelligence into space through objective selection of hyperspectral earth observation
applications: To bring the “brain” close to the “eyes” of satellite missions. IEEE Geoscience and
Remote Sensing Magazine, 11(2):10–39, 2023.

6



ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

Siyu Zhou and Lucas Mentch. Trees, forests, chickens, and eggs: when and why to prune trees in
a random forest. Statistical Analysis and Data Mining: The ASA Data Science Journal, 16(1):
45–64, 2023.

Yi Zhou, Rui Zhang, Shixin Wang, and Futao Wang. Feature selection method based on high-
resolution remote sensing images and the effect of sensitive features on classification accuracy.
Sensors, 18(7):2013, 2018.

7



ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

A APPENDIX

A.1 DATASET AND MODEL ANALYSIS

Dataset Analysis As outlined in Section 2.2, the HYPERVIEW challenge comprises 1732 training
and 1154 testing patches with a spectral range of 462.080 – 938.370 nm across 150 bands. The
dataset’s heterogeneity is evident in varying patch sizes and aspect ratios, challenging the selection
of an architectural approach. Notably, approximately 38% of the dataset consists of small patches
(up to 32⇥ 32 pixels), further complicating the analysis. The INTUITION-1 dataset, while spatially
identical to HYPERVIEW challenge, offers a distinct spectral perspective (192 bands), providing a
broader spectral viewpoint without adding spatial complexity. Analysis of ground truth data reveals
a concentrated distribution of soil parameters, with outliers constituting less than 5% of the data.
Excluding pH, outliers tend to skew right of the mean, while pH outliers show more symmetry.

Model Analysis The superior EAGLEEYES model from the HYPERVIEW challenge builds upon
classic ML models with the combination of feature engineering for supervised regression tasks
(Figure 3). This model was developed in four variations, with and without spatial feature extrac-
tion, tailored for HSIs of 150 (HYPERVIEW dataset) and 192 (INTUITION-1 dataset) spectral bands.
We specify the inclusion of spatial features by adding “spatial” in parentheses when referencing a
model (e.g., HYPERVIEW (spatial) benefits from spatial features across 150 bands, while INTUITION-
1 focuses solely on spectral features over 192 bands). Performance evaluation involved juxtaposing
predicted values against actual ground truth data, and analyzing residuals to assess accuracy. Fig-
ure 4 showcases the EAGLEEYES model’s iterations across soil parameters. Despite uniform per-
formance across parameters, the model’s accuracy was far from ideal. Residual analysis, through
boxplots and histograms, indicated a Gaussian distribution with a mean of 0, but notable variance
points to significant deviations for many samples. Scatter plots in Figure 4 reflect this, showing
predictions primarily near the zero-error line but with widespread variation. This distribution leads
to higher residuals, especially for values outside the model’s learned prediction range, highlighting
challenges with distinct or outlier data.

A.2 MATHEMATICS BEHIND SHAP

The Shapley value �i(x) for feature i and observation x are defined as

'i(x) =
X

S✓P\{i}

|S|! (p� |S|� 1)!

p!
(vS[{i}(x)� vS(x)),

where P is a set of all features, p = |P | is the number of features, vS(x) is the prediction calculated
for model f after features from set S are set, typically it is the mean prediction for the conditional
distribution with fixed values of the features in the set S, i.e., vS(x) = Ex|Sf(x), but there are also
other alternatives used if features are correlated (Covert et al., 2020). Shapley values are calculated
locally for a specific feature and observation, but they can also be aggregated to get the global
importance of a selected variable imp(i) =

PN
j=1 |'i(xj)|, or attribution of a group of features

(F ✓ P ) 'F (x) =
P

i2F 'i(x). In our case, we make use of this ability to aggregate shapley
values according to hyperspectral bands or specific transformation methods.

A.3 SHAP IN RESIDUALS

In our extended analysis, we closely examined instances of significant overestimation and under-
estimation, as well as the “best” prediction outcomes, across all model variants. We consistently
observed the same set of features appearing in each scenario, although their importance rankings
varied. This pattern makes it challenging to identify particular features responsible for overestima-
tion and underestimation directly. Moreover, investigating specific prediction cases did not yield
insights that could be generalized to understand the model’s overall behavior or the characteristics
of the underlying data more broadly.
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Figure 3: A flowchart presenting the EAGLEEYES soil parameters’ estimation approach. Four re-
gression models (random forests) are trained to retrieve one parameter each, and they operate on
manually-designed feature extractors obtained for an input HSI of size w⇥ h⇥ b, where w and h is
its width and height, respectively, and b denotes the number of spectral bands (in this study, b = 150
or b = 192).

A.4 SHAP VISUALIZATIONS

9



ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

Figure 4: Residuals visualization for each soil parameter across different model versions. Each row
represents a soil parameter, in the order of phosphorus, potassium, magnesium, and pH. Within each
row: the left panel shows a scatter plot (ground truth on the x-axis, predicted values on the y-axis),
the middle panel displays a boxplot of residuals, and the right panel presents a histogram of the
residuals.

A.5 SHAP AGGREGATION VISUALIZATIONS
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Figure 5: Visualization of the top 10 features identified by Shapley values, ordered by their contri-
bution to model predictions in the EAGLEEYES model trained for the HYPERVIEW challenge. The
panels show, clockwise from top left, phosphorus, potassium, magnesium, and pH.
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Figure 6: SHAP dependency plots showcasing the most influential feature in each iteration of the
EAGLEEYES model. The arrangement is as follows: HYPERVIEW (top left), INTUITION-1 (top right),
HYPERVIEW (spatial) (bottom left), and INTUITION-1 (spatial) (bottom right). The x-axis represents
the variation in feature value, while the y-axis depicts the corresponding change in Shapley values.
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Figure 7: SHAP beeswarm plots for each iteration of the EAGLEEYES model, starting from the
top HYPERVIEW , INTUITION-1 , HYPERVIEW (spatial), and INTUITION-1 (spatial), displaying how
feature values contribute to predictions. Features are displayed in descending order of influence.
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Figure 8: Shapley values for transformation aggregation in the EAGLEEYES models, showing feature
importance across soil parameters (left) and model iterations (right).

Figure 9: Shapley values for transformation aggregation across each iteration of the EA-
GLEEYES model, presented as follows: HYPERVIEW (top left), INTUITION-1 (top right), HYPER-
VIEW (spatial) (bottom left), and INTUITION-1 (spatial) (bottom right), illustrating feature impor-
tance across various soil parameters.
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