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ABSTRACT

ML4RS has the potential to enable comprehensive population monitoring to in-
form wildlife and biodiversity conservation. However, annotated datasets of
wildlife in-situ are often difficult, expensive, and time-consuming to procure. This
paper proposes a computational and data efficient method to synthesize composite
images to supplement real-world data in data-sparse environments with few posi-
tive samples. Our method showed up to a 3% increase in target-class IoU scores
on three aerial remote sensing datasets. We aim to use this method with a novel
aerial dataset of the Boreal forest for ungulate monitoring.

1 INTRODUCTION

Remote sensing of wildlife habitat at scale via aerial imaging and deep-learning (DL) based detec-
tion/segmentation methods has potential to dramatically improve our understanding of remote eco-
zones. Detailed and comprehensive aerial imaging to count and track animals can be used to inform
our understanding of fragile population dynamics, monitor and track progress on efforts to improve
biodiversity (e.g. the reintroduction of native species), and improve the security of traditional food
sources for Indigenous communities (e.g. Caribou in the Northern Boreal forest). Building DL
models for this problem is challenging due to variability in vegetation and animal appearance across
ecozones and seasons, and is particularly challenging for sparsely populated ecozones, such as large
mammals in forested environments, where images with positive samples are rare. We have encoun-
tered these issues while curating a novel aerial image dataset of the Canadian Boreal Plains ecozone:
of 612 distinct image sets captured over 5 flights and an area greater than 1000 km2, we found only
24 images with positive samples (127 animal instances across 8 target classes).

The USask-Wilds dataset is a novel multispectral wildlife dataset that aims to develop our under-
standing of the food web dynamics at scale in the Canadian Boreal Plains ecozone. The dataset aims
to provide data to allow for modeling beyond the reach of ecologists due to a need for more data
on the densities of interacting species, especially for species that are costly to monitor, like large
mammals in forested environments. New approaches to wildlife detection tackle the fundamental,
yet intractable, problem of cost-effectively obtaining accurate, precise, and simultaneous data on
multiple wildlife populations at scale to monitor complex population dynamics.

Synthetic data has been shown to effectively supplement real-world data in training DL models
in cases of sparse positive samples or unbalanced class distributions (Nikolenko, 2019; Kim et al.,
2022). Some of the most common methods use generative adversarial networks (GANs, Goodfellow
et al., 2014), variational autoencoders (Kingma & Welling, 2022), diffusion models (Ho et al., 2020;
Li et al., 2023), and computer graphics (Ubbens et al., 2018) to generate high-fidelity synthetic
images from masks or label references. These approaches have shown promise in alleviating the
challenges posed by unbalanced datasets. However, the successful application of these generative
approaches requires high computational costs and large datasets, e.g. reduced training data sizes
results in drastic performance degradation for GANs Zhao et al. (2020). An alternative light-weight
approach for synthetic data augmentation is image compositing: taking the foreground objects of
one image and combining it with the background from another image (Chen & Kae, 2019; Zhang
et al., 2020). Compositing has been used previously for remote sensing of weeds in field images,
where weed plant instances were very sparse compared to instances of crop plants Gao et al. (2020).
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Figure 1: Example images from the TUGraz (left), Swiss-Okutama (middle), and UAVid (right)
datasets, including the original RGB images (top row, red box denotes target instance), the corre-
sponding segmentation masks (middle row), and a zoomed-in view of a target instance (bottom row).

Dataset # Images # Objects # Targets % Targets % Target Pixels

TUGraz 398 141, 508 1, 566 1.106 1.052
Swiss 281 108, 326 136 0.125 0.004
UAVid 250 98, 067 5, 750 5.863 0.906

Table 1: Summary of datasets used, including target class frequency by count and pixel count.

In this paper, we propose a novel image compositing approach tailored to aerial images with lim-
ited positive samples. We evaluate its use in data augmentation for training semantic segmentation
models for person detection in three public aerial image datasets. Our results show a 3% increase
target-class IoU and tighter IoU prediction spreads. In future, we plan to apply this approach to
animal detection in our Boreal aerial image dataset, which is currently in progress.

2 METHODS

2.1 DATASETS

As our new wildlife aerial dataset is under development, we used three public remote sensing
datasets with similar characteristics (drone-captured, sparse target class instances) to evaluate image-
composite based data augmentation in this study (see examples in Figure 1, summary in Table 1).

The TUGraz Semantic Drone Dataset (TUGraz, 2019) was curated by the Institute of Computer
Graphics and Vision at the Graz University of Technology (TU Graz) with autonomous flight safety
and landing procedures in mind. The dataset focuses on a semantic understanding of urban scenes,
with 20 houses from a nadir (bird’s eye) view acquired 5 to 30 meters above the ground.

The Swiss-Okutama Drone Datasets (Speth et al., 2022) is comprised of the Swiss Dataset —
100 images taken around Cheseaux-sur-Lausanne in Switzerland, at a flight height of around 80
meters and the Okutama Drone Dataset, with 91 images taken around Okutama, west of Tokyo,
Japan, flying at a height of around 90 meters. All images represent are taken from a nadir, and are
hand-labeled with pixel-wise semantic segmentation annotations.
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The UAVid Dataset (Lyu et al., 2020) is a high-resolution UAV semantic segmentation dataset,
which includes large-scale variation and moving objects. The dataset consists of 30 video sequences
capturing high-resolution images in oblique views.

2.2 DATA AUGMENTATION WITH COMPOSITE IMAGES

Image composites aim to modify the distribution of target class objects (classes of interest) by plac-
ing these target objects onto a different part of the image. The new location is determined using
constraints on the background pixels to ensure reasonable realism in the composite images. The
process was designed to be as unrestrictive as possible — allowing the script to randomize location,
maximizing variation, and only restricting the background pixels to ensure a realistic spatial asso-
ciation with the background to reflect pragmatic areas in which the target class would naturally be
located. The target masks are shared across images, allowing the final target pixels in composites
to originate from another image. This was especially useful in cases with cut-off target objects or
images with no target objects. Our image composites are based on target objects in the pictures,
and we aim to use the composites to supplement images with low-quality target objects or no target
objects. We used the class representing human objects in the images as the target class for this study.

2.3 MODEL AND EVALUATION

We used DeepLabV3+ (Chen et al., 2018) as the baseline model, because it is still considered
the leading CNN approach to semantic segmentation. DeepLabV3+ adds an encoder-decoder
to DeepLabV3 (Chen et al., 2017), which, itself, was novel in removing the DenseCRF post-
processing layer and adding atrous convolution layers to improve performance and computational
efficiency. We used Iakubovskii (2019)’s DeepLabV3+ implementation and a ResNeXt (Xie et al.,
2017) encoder with ImageNet (Deng et al., 2009) weights, yielding 86M trainable parameters.

We used the Lovász-Softmax (Berman et al., 2018) loss for this application, as it is a direct optimiza-
tion of Jaccard-Index (see Sec 2.4). It was shown to perform better with respect to Jaccard losses
than the traditionally used cross-entropy loss. We can provide an optional argument weight — a 1D
Tensor assigning weight to each class, which is particularly useful when working with an unbalanced
training set. We elected not to do this for this study as the real and synthetic datasets have completely
different distributions, which would require two different sets of weights. While this would make
the model perform well within the chosen homogenous data for the experiment, it would hamper
performance in other experiments with different distributions. We used the OneCycleLR learn-
ing rate scheduler, which takes advantage of a phenomenon called “super-convergence” (Smith &
Topin, 2018), where neural networks can be trained an order of magnitude faster than with standard
training methods. This was especially useful in this application considering that Smith & Topin
(2018) found that super-convergence provides a more significant performance boost than standard
training when the amount of labeled training data is limited.

2.4 METRIC — MEAN INTERSECTION-OVER-UNION (JACCARD-INDEX)

To measure model performance, we use the canonical semantic segmenation metric of Intersection
over Union (IoU), also known as the Jaccard Index. IoU is the area of the intersection over the union
of the predicted segmentation and the ground truth segmentation.

The Mean Intersection over Union, mIoU, is the average IoU over all classes in the image. It reflects
the model’s performance at predicting, on average, across all object classes in the image. We use
equal weights for the different classes, so no penalty or reward is applied for different class types.
For a ground-truth mask GT and a predicted mask P, with k classes, the mIoU can be calculated as:

mIoU =
1

n

k∑
i=1

GTi ∩ Pi

GTi ∪ Pi
(1)

In addition to the mean IoU, we also use a class IoU that is often used in instance-segmentation
applications to judge the performance of our approach on the target class. This metric differs slightly,
because we only consider the masks and predictions with respect to the target class (T ), as follows:
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IoUT =
GTT ∩ PT

GTT ∪ PT
(2)

We also report mIoU Kurtosis (α4), which is a measure of the “tailedness” of the probability dis-
tribution (Kallner, 2018). The standard normal distribution has a kurtosis of 3, and is considered
mesokurtic. (α4) > 3 distributions, also known as leptokurtic distributions can be visualized as a
thin bell curve - with a high peak, while (α4) < 3 distributions are called playtkurtic, and have broad
peaks. Kurtosis of IoU distributions has been used to evaluate the performance of a model (Taran
et al., 2018), which compared the performance of models to a normal distribution.

3 RESULTS

We evaluate our method on the real-world test sets. We ran two separate experiments, a baseline
performed on the raw dataset (Real) and a hybrid experiment, which includes a 1:1 ratio of synthetic
and real training images (Hybrid). Both experiments were evaluated on real-world test images.
We ran over 20 iterations of the compositing and evaluation process to calculate these results over
multiple composite data.

Dataset Experiment µ IoU ↑ µ IoUT ↑ α4 IoU α4 IoUT

TU Graz Real 0.565 0.667 1.091 6.029
Hybrid 0.579 0.695 1.106 1.387

Swiss Real 0.590 0.108 -0.764 -1.082
Hybrid 0.613 0.108 -0.604 -0.742

UAVid Real 0.514 0.204 -0.405 -0.581
Hybrid 0.519 0.235 -0.146 -0.663

Table 2: Mean (µ) and Kurtosis (α4) calculated from predicted masks on the real test sets. Higher
mean IoU values indicate better predictions. A Kurtosis value of 3 suggests a normal distribution,
high values indicate pronounced peaks, and low values suggest flattened peaks.

The real and hybrid experiments are similar in terms of their overall performance; the hybrid experi-
ment outperforms the real experiment, albeit with minor performance improvements — which could
be attributed partly to the larger dataset size in the synthetic dataset. However, the hybrid dataset
outperforms the real data in target mask inference, with 0.02 − 0.03 improvements in IoU. UAVid
shows a more significant increase, which indicates that the shifted oblique point-of-view lends to
more robust inferences with synthetic data.

The overall mIoU Kurtosis once again improved from real data to hybrid data. The improvement
in mIoU kurtosis is more pronounced than the change in mean metrics. The Class IoU of the target
classes shows a more intriguing trend. UAVid, an urban dataset showing city scenes with roads,
shows a marginal decrease in kurtosis. TUGraz had an extremely high Kurtosis of 6, which over-
corrected to a kurtosis of 1.3 on the hybrid data, owing to the variation in open urban areas —
cemented/paved areas, grass, and urban stairs. The Swiss-Okutama dataset has a combination of
more open areas and a varied mix of urban concentration and also showed a more reasonable cor-
rection of kurtosis, closer to the normal distribution.

4 DISCUSSION

The objective of this study was to assess whether including composite images of a target class is an
effective data augmentation strategy for aerial image datasets. We found that our image composite
augmentations resulted in a 3% increase in target-class IoU, and tighter IoU prediction spreads that
are closer to the normal distribution. While the work generated positive results, there are multiple
avenues for future work worth exploring. We are interested in studying the effects of distribution
shifts in model performance and robustness to distribution shifts which are common in aerial image
datasets (different locations, different time-of-year, et al.). We are also interested in applying this
method to animal detection in our new aerial image dataset of ungulates in the Canadian Boreal
Plains ecozone, which we will report on our progress at the ML4RS workshop.
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