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ABSTRACT

Cloud formations often obstruct the effectiveness of optical satellite monitoring,
imposing limitations on Earth observation (EO) tasks such as land cover mapping,
ocean color analysis, and cropland monitoring. While machine learning (ML)
methods have improved EO tasks, challenges persist, primarily the dependence
on annotated data for ML training, especially in EO contexts like cloud optical
thickness (COT) estimation. To address the scarcity of COT data, we propose a syn-
thetic dataset simulating top-of-atmosphere radiances for 12 spectral bands of the
MSI sensor on Sentinel-2 platforms, and encompassing various cloud types, COTs,
and environmental conditions. Extensive experimentation on training ML models
to predict COT from spectral band reflectivities demonstrates the utility of the
proposed dataset. Generalization to cloud cover mapping on real data is verified on
two satellite image datasets. The data, code and models have been made available
at https://github.com/aleksispi/ml-cloud-opt-thick.

1 INTRODUCTION

Space-based EO significantly enhances data collection worldwide, encompassing not only atmo-
spheric parameters from remote locations but also underlying layers. Examples include land use
and cover classification (Abid et al., 2021b), damage assessment for natural disasters (Mateo-Garcia
et al., 2019; Abid et al., 2021a), biophysical parameter retrieval (Camps-Valls et al., 2006), urban
growth monitoring (Gomez-Chova et al., 2006), and crop yield estimation (Wolanin et al., 2020).
These applications rely heavily on satellite optical sensors, and cloud coverage poses a hindrance to
signal exploitation (Gómez-Chova et al., 2007). Precise cloud cover estimation is thus crucial for
maintaining the effectiveness of these applications.

Cloud detection and estimation in multi-spectral images (MSI) encompass rule-based statistical meth-
ods and advanced deep learning approaches. Rule-based thresholding, exemplified by FMask (Zhu
et al., 2015) and Sen2Cor (Louis et al., 2016), utilizes physical cloud properties across different
spectral bands for cloud masking in Landsat and Sentinel-2 MSI. A recent surge in the literature has
applied machine learning (ML) approaches to tackle the challenge of cloud detection and estima-
tion (Mateo-Garcı́a et al., 2020; Zhang et al., 2020; Kanu et al., 2020; Jeppesen et al., 2019). These
methods, which employ CNNs coupled with extensive manually annotated satellite image datasets,
outperform traditional rule-based techniques.

Clouds exhibit natural inhomogeneity, and their spatial inhomogeneity, particularly in cloud optical
thickness (COT), impacts both remote sensing imagery and atmospheric radiations. The prevalent
method for COT estimation is independent pixel analysis (IPA), which assumes homogeneity within
a pixel and lacks information about neighboring pixels. Statistical approaches (Liu, 1995; Zinner and
Mayer, 2006; Iwabuchi and Hayasaka, 2002) have explored factors influencing COT, and introduced
parameters to mitigate their effects. Deep learning advancements (Krizhevsky et al., 2012; He et al.,
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2016) have led to neural network-based COT approaches (Okamura et al., 2017; Sde-Chen et al.,
2021), which typically require neighboring pixel information and substantial annotated spatial data.

Both statistical and ML-based methods require benchmark datasets for performance evaluation and
improvement. Each pixel in the satellite images must typically be labeled manually or by a superior
instrument (e.g. an active LIDAR (Håkansson et al., 2018)) as cloudy or cloud-free (or using even
finer-grained labels). Cloud complexity intensifies the task, as it often requires time-consuming expert
labeling, which results in limited publicly available datasets. Among the few available benchmarking
datasets, we have chosen to consider the KappaZeta dataset (Domnich et al., 2021); see §4.

In this work we introduce a new IPA dataset simulating top-of-atmosphere (ToA) radiances for 12
MSI spectral bands.1 Acknowledging the systematic error introduced by IPA due to 3D effects (Zinner
et al., 2010), particularly for high spatial resolution applications, we recognize the value of derived
COT for flexible data use, such as clear-conservative vs cloud-conservative cloud masks. Generated
using RTTOV v13, the dataset comprises 200,000 data points. Our analysis of various ML models
for cloud detection and COT estimation on this dataset suggests that multi-layer perceptron (MLP)
outperform alternatives, such as linear regression. Furthermore, we evaluate our models on two real
satellite image datasets – KappaZeta as well as a national forest agency dataset that we introduce in
this work – demonstrating their generalization to cloud cover mapping on real-world data.

2 SYNTHETIC CLOUD OPTICAL THICKNESS DATASET

Our novel synthetic dataset for COT estimation is created by connecting surface and atmospheric
properties to ToA reflectivities observed by the MSI on Sentinel-2 satellites. The dataset is generated
using the fast Radiative Transfer for TOVs (RTTOV) v13 model (Saunders et al., 2018). The
simulations rely on atmospheric profiles, randomly chosen from a dataset of 10,000 profiles provided
by the European Centre for Medium-range Weather Forecasts (ECMWF) (Chevallier et al., 2006).
These profiles are used to represent diverse atmospheric conditions. The surface is treated as a
Lambertian reflector (Koppal, 2014). Spectral reflectance for soil, rocks, and vegetation are obtained
from the ECOSTRESS spectral library (Baldridge et al., 2009; Meerdink et al., 2019), with surface
types chosen randomly. The instrument-specific reflection is derived by convolving the spectral
surface reflection with the spectral response function of the corresponding MSI channel.

The dataset comprises 200,000 simulated data points resembling individual pixels observed by
a satellite instrument, covering various cloud types, COTs, ground surface characteristics, and
atmospheric profiles. It is divided into four equal-sized parts, with one dedicated to clear sky and the
remaining three featuring water clouds, ice clouds, and mixed clouds. Each data point is comprising
simulated measured reflectivities for 12 spectral bands, along with optional features such as satellite
zenith angle, sun zenith angle, azimuth difference angle, gas optical thickness, vertically integrated
water vapour, and surface profile. The ground truth for each data point includes the non-negative COT
and cloud type. This study focuses on using the 12 band reflectivities as ML model input, as they
are least affected by aerosols. The ground truth COT is within the range [0, 50], where the radiative
transfer model determines the upper limit. For the training, validation, and testing of ML models, we
randomly allocate 160,000 data points for training, 20,000 for validation, and 20,000 for testing.

3 MACHINE LEARNING MODELS

This section offers a concise overview of the ML models used for COT estimation. Given the dataset’s
pixel-level format with no spatial relationships, we predominantly utilized MLP models. Preliminary
experiments explored various approaches, including Random Forests, but MLPs demonstrated
superior performance. Extensive model validations indicated that a five-layer MLP with ReLU
activations and a hidden dimension of 64 (consistent across all layers) yielded the optimal results.
The proposed model operates on a per-pixel basis due to the limitations in the synthetic dataset. So,
to enhance spatial consistency when working with real imagery I ∈ RH×W×C , we employ a simple
post-processing trick on the resulting COT prediction map C ∈ RH×W . This involves a sliding
window of size M ×M with a stride of 1 over C, computing an average among M2 values at each
location. We found M = 2 to produce robust results.

1The aerosol (B1) band is not included, as it vastly increases computational complexity to the simulation.
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Model training. We perform standardization on the input, applying channel-wise zero mean and
unit variance based on training data statistics, as more sophisticated normalization techniques did
not yield improvements. The ML models are trained using the Adam optimizer (Kingma and Ba,
2014) with an L2-loss for 2e6 batch updates, employing batch size 32 and learning rate 3e-4. To
improve model robustness, independent Gaussian noise is introduced to each input, characterized by
a zero-mean and a standard deviation equivalent to 3% of the average magnitude of each input feature.
The models are very lightweight and training can be done without a GPU in approximately an hour.

Fine-tuning with weaker labels. The KappaZeta dataset has pixel labels for ’clear’, ’opaque cloud’,
and ’semi-transparent cloud’, respectively. Let τ semi and τ opaque (where 0 < τ semi < τ opaque) denote
the semi-transparent and opaque COT thresholds, respectively. Then, we refine a model using a loss
L which satisfies the following criteria. If p denotes the prediction of a pixel which is labeled as

• ‘clear’, then

L(p) =
{
0 if p ≤ τ semi,
1
2 (p− τ semi)2 if p > τ semi;

• ‘opaque cloud’, then

L(p) =
{
0 if p ≥ τ opaque,
1
2 (p− τ opaque)2 if p < τ opaque;

• ‘semi-transparent cloud’, then

L(p) =


0 if τ semi ≤ p ≤ τ opaque,
1
2 (p− τ semi)2 if p < τ semi,
1
2 (p− τ opaque)2 if p > τ opaque.

4 EXPERIMENTAL RESULTS

In this section we extensively evaluate various ML models for COT estimation, as well as COT-based
cloud masking in real satellite imagery. The models include: (i) MLP-k, a k-layer MLP (the main
model has k = 5), where results are averaged among 10 identical k-layer MLPs, differing only
in the random seed for network initialization; (ii) MLP-k-ens-n, an ensemble of n k-layer MLPs,
each identically trained but with a unique random network initialization; (iii) MLP-k-no-noise is
equivalent to MLP-k but trained without additional noise in the training data (note that default training
includes 3% additive noise); and (iv) lin-reg, a linear regression model.

Results on the proposed synthetic dataset. Table 1 reports the mean absolute error (MAE)
between the predicted outputs and corresponding ground truths on unseen test data. Training on data
with artificially added noise improves model robustness significantly. Ensembling only marginally
improves performance. MLPs significantly outperform linear regression models.

Results on KappaZeta. The publicly available KappaZeta dataset (Domnich et al., 2021) is used to
assess our models on real satellite imagery. Due to the absence of COT values, we focus on pixel
categories ’clear’, ’semi-transparent cloud’ and ’opaque cloud’. A subset is set aside (April, May,

Table 1: MAE values on different variants of the test set of our synthetic dataset. Test-x% refers to
the test set with x% added noise. Ensemble methods marginally improve over single-model ones.
Models trained with additive input noise yield significantly better average results. Linear regression
performs worst by far. Note that for the single-model variants MLP-5, MLP-5-no-noise and Lin-reg,
we show the mean MAE over 10 different network parameter initializations and standard deviations.

MLP-5 MLP-5-ens-10 MLP-5-no-noise MLP-5-no-noise-ens-10 Lin-reg
Test-0% 1.63± 0.01 1.56 1.05± 0.01 0.92 6.49± 0.00
Test-1% 1.68± 0.01 1.61 1.59± 0.01 1.46 6.51± 0.00
Test-2% 1.82± 0.01 1.75 2.51± 0.01 2.34 6.55± 0.00
Test-3% 2.04± 0.01 1.97 3.42± 0.02 3.20 6.63± 0.00
Test-4% 2.32± 0.01 2.25 4.21± 0.03 3.95 6.74± 0.01
Test-5% 2.63± 0.01 2.56 4.90± 0.04 4.58 6.88± 0.01
Average 2.02± 0.01 1.95 2.95± 0.02 2.74 6.63± 0.00
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Table 2: Test set results on KappaZeta. Our top MLP approach (MLP-5-ens-10-tune) exhibits
lower performance compared to a U-net, as U-net integrates information from neighboring pixels, a
capability inherently lacking in MLPs. Among the MLP approaches, fine-tuning on the KappaZeta
training set enhances results (column 4 vs 3).

Metric MLP-5-tune MLP-5-ens-10 MLP-5-ens-10-tune U-Net
F1-avg 0.51 0.49 0.52 0.66

F1-clear 0.54 0.53 0.54 0.72
F1-semi 0.30 0.25 0.31 0.49

F1-opaque 0.70 0.70 0.71 0.78
mIoU 0.46 0.43 0.47 0.54

IoU-clear 0.63 0.60 0.63 0.62
IoU-semi 0.20 0.15 0.21 0.35

IoU-opaque 0.54 0.54 0.56 0.65

Figure 1: Left: Examples of our main MLP approach (ensemble of ten 5-layer MLPs) on unseen
KappaZeta test data. Column C1: Input image (only RGB is shown). C2: COT estimates (relative
intensity scaling, to more clearly show the variations). C3: Pixel-level cloud type predictions based
on thresholding the COTs in column 2. C4: KappaZeta ground truth. Dark blue is clear sky, lighter
blue is semi-transparent cloud, and turquoise is opaque cloud. Right: Similar to the left, but the 2nd
column shows the thresholded model predictions (instead of the COT estimates), and the 3rd column
is the U-net prediction. A failure case for both models is shown on the bottom row.

June; 3543 images) to find COT thresholds corresponding to semi-transparent and opaque clouds.
These thresholds are respectively found to be 0.75 and 1.25 on the KappaZeta training data.

The MLP models, pretrained on synthetic data, are evaluated using the KappaZeta dataset with 2511
from the July, August, and September subsets. In Table 2, MLP-5-ens-10-tune obtains a lower mIoU
and F1-score compared to the U-net (Wada, 2017) (0.47 vs 0.54 and 0.52 vs 0.66, respectively). The
expected superiority of U-net is due to its incorporation of spatial connectivity in images inherently
lacking in MLPs. Fine-tuning on the KappaZeta training set improves test set results (column 4 vs
column 3), benefiting from domain consistency. Additionally, model ensembling only marginally
improves results (column 4 vs column 2).

Qualitative results. We further examine qualitative results in Fig. 1. The left side focuses on the
MLP results with estimated COT values (column 2), while the right side features comparisons
to the U-net. We can see that the ground truth segmentation masks exhibit a bias towards
spatial connectivity among pixels. This bias emphasizes spatial consistency over finer-grained
contours, leading to potential inaccuracies. The U-net architecture, capable of leveraging spatial
connectivity, accommodates this bias effectively. However, per-pixel models, such as the MLPs
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Table 3: Results on test data from the Swedish Forest Agency (SFA). It is worth noticing that the
various MLP approaches were not trained on any SFA data. Our MLP-5-ens-10 model yields results
comparable to ResNet18-cls (which was trained on the SFA training set), and it outperforms the SCL
by ESA. Note that MLP-5 represents the average result of ten MLP-5 models that were trained using
different network initializations, whereas MLP-5-ens-10 is an ensemble of those ten different models.

Metric MLP-5 (ours) MLP-5-ens-10 (ours) ResNet10-cls ESA-SCL
F1-avg 0.73 0.88 0.90 0.68

F1-clear 0.81 0.94 0.94 0.88
F1-cloudy 0.65 0.82 0.86 0.48

in our case, may face challenges due to this bias. Interestingly, in some instances, the MLP
predictions visually appear more accurate than the ground truth when compared with the input images.

Results on data from the Swedish Forest Agency (SFA). The Swedish Forest Agency
(SFA) is a national authority in charge of forest-related issues in Sweden. Their main function is to
promote management of Sweden’s forests, enabling the objectives of forest policies to be attained.
Among other things, the SFA runs change detection algorithms on satellite imagery, e.g., to detect if
forest areas have been felled. For this, they rely on ESA’s scene classification layer (SCL), which
also includes a cloud probability product. The SFA’s analyses require cloud-free images, but the SCL
layer is not always accurate enough. Therefore, we applied models that were trained on our synthetic
dataset on the SFA’s data in order to classify a set of images as ‘cloudy’ or ‘clear’.

To achieve this, the SFA provided 432 Sentinel-2 Level 2A images of size 20 × 20 (corresponds
to 200× 200 m2) that they had labeled as cloudy or clear (120 cloudy, 312 clear), where an image
was labeled as clear if no pixel was deemed to be cloudy. Note that the cirrus (B10) band was
not included, so when working with this dataset, we re-trained our MLP models on the synthetic
dataset after excluding this band from that data. The 432 images were randomly split into a training,
validation, and test split, such that the respective splits have the same ratio between cloudy/clear
images (i.e., roughly 28% cloudy and 72% clear images per split). The training, validation, and test
sets contain 260, 72 and 100 images, respectively.

The results on the test set are shown in Table 3. For our MLPs, we use the validation data to set a COT
threshold above which a pixel is predicted as cloudy (0.5 was found to be best). For the SCL, a pixel
is predicted to be cloudy if the SCL label is ‘cloud medium probability’, ‘cloud high probability’, or
‘thin cirrus’. For both approaches, if a pixel is predicted as cloudy, the overall image is predicted as
cloudy. We also compare with a ResNet-18 model He et al. (2016) for binary image classification
(cloudy or clear), trained on the union of the training and validation sets. Left-right and bottom-up
flipping were used for data augmentation. From Table 3, we see that our main model (an ensemble
of ten five-layer MLPs) is on par with the dedicated classification model, despite not being trained
on a single SFA data point (except for COT threshold tuning), and despite the fact that the synthetic
training data represents top-of-atmosphere data (i.e., Level 1C, not Level 2A as the SFA data). We
also see that model ensembling is crucial (MLP-5-ens-10 vs. MLP-5), and that our MLP-5-ens-10
model significantly outperforms the SCL (average F1-score 0.88 vs. 0.68 for the SCL). Finally, we
note that even using only a single MLP-5 model yields a higher average F1-score than the SCL.

5 CONCLUSIONS

In this work, we have introduced a novel synthetic dataset that can be used to train models for
predicting cloud types of pixels (e.g., clear, semi-transparent, and opaque clouds) via thresholding
cloud optical thicknesses (COTs). Several ML approaches were explored for this dataset, and it
was found that ensembles of MLPs perform best. Despite our proposed synthetic dataset (and
thus associated models) being inherently pixel-independent, the models show promising results on
real satellite imagery. In particular, our MLP approach can seamlessly transition to real datasets
without additional training. To showcase this, we directly applied (without further training) this MLP
approach to the task of cloud classification on a novel real image dataset and achieved an F1 score
that is on par with a ResNet model that was explicitly trained on the target dataset. Furthermore, our
approach is superior to the ESA scene classification layer at classifying satellite imagery as clear or
cloudy, and can flexibly generate cloud type segmentation masks via COT thresholding.
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